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Quick Start

A tableau calculus and a problem set are the inputs required to run METTEL. The tableau
calculus can be either selected from one of general predefined calculi mentioned in Sec-
tion[4.2)on Page[11} or can be defined as explained in Section[4.T|and then given to METTEL
via an input file using the —tb1 option.

The problem set can be either given to the system in an input file using the option —i or
through the standard input stream. Input from standard input stream needs to be termi-
nated by ctrl + D.

The command for running METTEL has the following form:

java —jar mettel. jar
[-tbl <calculus—file—name> | <predefined tableau option> ]
[-o <output—file—name>]
[-e <error—file—name>]
[-i <problem—set—file—name>]
problem set in standard input if no input given
Table [5.1| on Page [19| demonstrates different ways of running METTEL via the command
line. The following example uses the predefined tableau calculus for Classical propositional
logic (option —boo1) for testing the satisfiability of P & Q & ~P.
java —jar mettel.jar —bool
P& Q
~ P
(CTRL +D)
The output for this example is Unsatisfiable. This means the given formula was found
to be unsatisfiable using the in-built tableau calculus of classical propositional logic. The
output is going to be Satisfiable when the problem set is satisfinble with respect to the
calculus. Chapter|[8] gives more examples of running METTEL.

There are errors that can terminate the execution of METTEL such as insufficient ar-
gument. As an example, if we use —i option when running METTEL, it should immedi-
ately follows by the file-name that contains the formulae for the problem set. Otherwise,
METTEL prompts the user with the following message:

Input file name required

Chapter[7jon Page[23|describes the different kinds of errors that might occur when running
METTEL.






One

System Overview

METTEL is a tableau prover for various modal, intuitionistic, hybrid, description and met-
ric logics. The user has the option of using one of the several predefined tableau calculi or
defines their own tableau calculus as input. METTEL implements generic loop-checking
mechanisms and the unrestricted blocking mechanism [5] to enforce termination. This makes
METTEL useful for experimenting and testing tableau calculi for non-classical logics for
which no sound and complete tableau calculi are known or for which no implementation
exists.

METTEL decides the following logics:
Classical propositional logic [7]
Intuitionistic propositional logic
Hybrid logic HL(@, u) with the universal modality [8]
The logic MT of metric and topology
All sublogics of the description logic ALBO™ [5]
At the moment, METTEL is the only tableau prover that can decide logics of metric and
topology and description logics with role negation [5]. Using the facility to specify tableau
rules METTEL can be used as a prover for many other more expressive or even undecidable
logics.

Tableau Calculus

s s S

Unsatisfiable \ Satisfiable + Model

Figure 1.1: How METTEL works

As shown in Figure METTEL takes a tableau calculus and a problem set as input.
The tableau calculus is given by a set of tableau rules and the problem set is given by a
set of formulae. The prover outputs Unsatisfiable if the set of formulae is not satisfiable
with respect to the tableau calculus. The prover outputs Satisfiable and a model found
for the set of formulae satisfiable with respect to the tableau calculus.
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METTEL Language

The language of METTEL is a many-sorted language. Namely, It consists of five sorts:
formulae, nominal terms (including Skolem terms), attributes, rational parameters from
metric logic and relational formulae (or roles).

2.1 Formulae

The primitives and operators that can be used to form formulae from other formulae, roles,
attributes and nominals are shown in Table The first column gives the names of the
primitives and operators. The second column shows how these primitives and operators
can be used to build formulae syntax in METTEL. The third and fourth columns give
examples of both formulae in METTEL syntax and standard syntax from literature.

The priority of the operators is as follows "forall, exists, @, false, true, ~, <<, &, |, —>
and <—>". Within METTEL formula, the first argument of box and diamond which is role,
always appear within a pair of curly brackets, e.g. {Role}.

2.2 Nominals

In METTEL, nominals have one of the two forms as indicated in Table The second
column specifies their syntax and the third column gives examples.

By default, nominal symbols denote constants in the problem set and variables in the
tableau calculus definition. They can be declared as being constant at the beginning of
the tableau calculus definition, using the constant keyword.

constant: i, j ;

Nominal symbols can be declared as being variables at the beginning of the problem set,
using variable keyword.

variable: i, Jj ;

We use lower-case identifiers for nominals to distinguish them from propositional vari-
ables, which should be specified by upper-case identifiers.

2.3 Attributes

The attributes sort in METTEL consists of an attribute which declared by a lower-case
identifier. Table [2.3|contain the syntax and an example for attributes.



CHAPTER 2. METTEL LANGUAGE

Primitive/Operator Syntax Sample Standard Syntax
TRUE TRUE TRUE T
FALSE FALSE FALSE L
Nominal see Table 3 j
Propositional Variable Upper—case Identifier P P
Not ~ formula ~P —>0Q -P—=Q
Or formula | formula P|Q PVvQ
And formula & formula P&Q PAQ
Implication formula —> formula P —>0Q P—-Q
Double Implication formula <—> formula P&Q <—> C|D PANQ&CVD
Closer formula << {attribute}formula Q << {a} P&Q Qe PNQ
AT @ nominal formula @i P|~Q @,PV-Q
E{ role } formula E{R} Q dR.Q
. exists { role } formula exists{R} Q dR.Q
Dl’?lmon'd or L some { role } formula some{R} Q JdR.QQ
Existential restriction dia { role } formula dia{R} O OR.Q
diamond { role } formula diamond{R} Q OR.Q
Existential modality some formula some P 5P
exists formula exists ~P 3-P
A{ role } formula A{R} (P—>Q) VR.(P — Q)
Box or forall { role } formula forall{R} (P—>Q) VR.(P — Q)
Universal restriction =~ all { role } formula all{R} (P—>Q) VR.(P — Q)
box { role } formula box{R} (P—>Q) OR.(P — Q)
. . forall formula forall (P & ~Q) V(P A-Q
Universal modality all formula all (P & ~Q) VEP/\ﬂQ%

Table 2.1: Syntax of formulae

Type Syntax Sample
Nominal lower-case Identifier 3
Skolem term Function—name[args seprated by comma] £[i,P,R]

Primitive

Syntax

Table 2.2: Syntax of nominals

Sample

Attribute

lower-case Identifier a

Table 2.3: Syntax of attributes
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2.4 Parameters

Table 2.4{ shows what primitives and operators we do allow in METTEL parameter. The
first column shows that, parameters in METTEL are either constant or variable or the result
of sum operator on two other parameters. The second column shows how these parame-
ters can be written. Finally, the last column demonstrate a sample of these primitives and
operators in METTEL syntax.

Primitive/Operator ~Syntax Sample
Contant Parameter  lower-case Identifier c
Variable Parameter = Rational Number 0.1
Parameter Sum parameter + parameter c + 0.1

Table 2.4: Syntax of parameters

2.5 Role or Relational terms

Table defines the syntax for role or relational formulae. The first column gives the
names of the primitives and operators. The second column shows how these primitives
and operators can be used to build role syntax in METTEL. The third and fourth columns
give examples of both formulae in METTEL syntax and standard syntax from literature.
The last three rows of Table[2.5|contain the roles for metric logic.

The priority of operators is as follows "+, |, &, | |, ., ;, %, ~, — and ~".

Since variable roles and propositional variables have the same syntax, METTEL distinguish
them based on the context. Constant roles can be specified by lower-case identifiers.
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Primitive/Operator Syntax Sample Standard Syntax
Constant Role lower-case Identifier r T
Variable Role upper-case Identifier R R
Complement ~role ~R -R
Reflex-Transitive closure rolex Rx R
Inverse role— R g
role* R* R~
Union role + role R + S RV S
role | role R | S RV S
Intersection role || role R || S RAS
role & role R &S RAS
Composition role . role R.S RoS
role ; role R; S RoS
Identity Role id id
. lower-case Identifier < parameter  x<a J(@<a)
Metric Role o <
lower-case Identifier <= parameter x<=a J(@<a)
Topology Role topo topo

Table 2.5: Syntax of roles
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Problem Set Definition

A problem set is a set of formulae. METTEL attempts to determine the satisfiability of
the given problem set by applying the rules of a particular tableau calculus. The user can
provide the problem set either in the standard input or in a file.
Here are three examples of formulae specifiable in METTEL:
box box{~(~R | S)} FALSE
( @i dia{R} j & @j dia{R} k ) —> @i dia{R} k
exists{a<x;a<y} P —> exists{a<(x+y)} P
The first formula encodes role inclusion R T S in terms of the box operator, role negation
and role union. The second formula defines R as a transitive relation in terms of the dia-
mond operator, formula conjunction and formula implication. The last formula expresses
the triangle property of metric relations (if there is a path to a property P consisting of two
distances for an attribute a which are strictly less than x and y respectively, then there is
an a-distance to P which is strictly less than « + y).
By default, nominals are constants. For using nominals as variables, they need to be
declared as being variable at the beginning of the problem set as follows.

variable: i , k ;

The BNF specification of problem set is given in Figure
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Problem set:= wvariable: lower-case identifier (, lower-case identifier)? ;)?
formula formula*

formula := formula <—> formula |  formula —> formula |
formula | formula | formula & formula |
'~" formula | @ nominal formula |
TRUE | true | FASLE | false |
E{ role } formula | a{role} formula |
nominal | propositionalVariable |
|

<< { attribute } formula
(exists | some | dia | diamond) ({ role })? formula |
(forall | all | box ) ({ role })? formula

nominal := lower-case identifier |
lower-case identifier [ formula formula* ];

role := role (+ | |) role | role(s | |])role |
role (; | .) role | role x |
~ role | role (~1-) |
Upper-case identifer | lower-case identifer |

lower-case identifer (< | <=) parameter

Figure 3.1: BNF of Problem set
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Tableau Calculus Specification

The user can either choose one of the predefined tableau calculi, or define a new calculus
in the tableau specification language of METTEL.

4.1 User-defined tableau calculus

The syntax for specifying tableau rules follows the standard premises/conclusions nota-
tion found in the literature.

Premises / Conclusion ;
That is, premises and conclusions are separated by / and each rules is terminated by ;.
There are three types of tableau rules: non-branching rules, branching rules and closure

rules. Non-branching rules have only one branch in their conclusion. All the conclusion
formulae used to be placed within a pair of brackets, as follows:

RulePremises / { RuleConclusion } ;

Branching rules are the rules that split the current branch into more than one branch. A
separated pair of curly brackets is required for each branch. The user can also optionally
put a | between each branch for better readability. In general branching rules look like
this:

RulePremises / { FirstConclusion } | ... | { LastConclusion } ;
Finally, closure rules have FALSE in their conclusion. They have the following form:
RulePremises / { FALSE };

Formally, the tableau specification input is defined by the BNF grammar given in Fig-
ure Here, formula refers to any formula in METTEL syntax as defined in Table
Examples are shown in Table On the left, the rules are written in METTEL syntax and
on the right they are written in standard syntax found in the literature.

Tableau Calculus := (constant: Lower-case identifier (, lower-case identifier)? ;)?
Tableau Rule ; (Tableau Rule;)*

Tableau Rule := formula (,formula)* / { formula (,formula)* }
(1? { formula (formula)* })* ;

Figure 4.1: BNF of Tableau Calculus
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METTEL Syntax Standard Syntax
Q;(P Vv
@i (PI1Q)/ { @i P } | { @i Q }; ﬁ
Q;(=P A —
@i (~P & ~Q)/ {@i ~P, @i ~Q}; é(-ﬁp @_ﬁg)
@, —~ORP, Q;ORj
@i ~(dia{R} P), @i dia{R} j / { @j ~P }; O@_ﬁp ORj
J
@i dia{R} P/ {@£[i,R,P] P, @i dia{R} £[i,R,P]}; QORP
7y ’ r ’ @f[i,R,P]P’ @7,<>R f[Z,R, P]
. . QP Q,-P
@i P, @i ~P / { FALSE }; —

Table 4.1: Comparing METTEL syntax with the syntax use in literature for defining tableau
rules

The first rule in Table is an or rule, defined as a branching rule which creates a
splitting point adding @i P to the left branch and @i @ to the right branch. The other
rules are non-branching rules except the last rule which is a closure rule and has FALSE
in the conclusion. The second rule is an instance of the standard and rule. It extends the
current branch by adding both @i ~P and @i ~Q. We use comma to separate the formulae
in one branch. The third rule is the standard box rule rewritten in terms of the negated
diamond. The fourth rule is a standard diamond rule which generate a new nominal in
the conclusion.The last rule, as we said earlier, is a closure rule.

Note the use of the Skolem term £[i, R, P] in the fourth rule. £ is a fucntion name which
is applied to a set of arguments. Here, £[i,R,P] represents a nominal newly created as
witness for the premise @i dia{R} P. The arguments i, r, p given uniquely link the term
to the premise (as i, r, p are the symbols occurring in the premise). Using Skolem terms in
this way means that it is possible to see how nominals created. For example it can be read
off from the term £[ £[a,rl,p],r2,q] that it represents a world reachable from world
a via a r1 transition followed by a r2 transition. It also used, since it is easy to track the
ancestors of any newly generated nominal.

Since role and propositional variable have similar syntax, we require the user to specify
the sorts of arguments when a Skolem function is used for the first time. In the Skolem
term, sort specification has the form of SORT : ARGUMENT for each argument, e.g., £[role:
R,prop:P,nominal:i]. The sort can be param for parameter, attr for attribute, nom for
nominal, prop for propositional and role for relation. So, the fourth rule of Table
would actually have to be written as £[nom:i, role:R, prop:P].

METTEL assumes the following conventions. In the user defined tableau, all the nomi-
nals are variable nominals unless they have been declared as constant nominal. Any con-
stant nominals declaration should precise the rules.
constant: i , k ;

By default, constant roles are denoted by identifiers which starting with a lower-case letter,
e.g. r. Constant roles cannot be substituted with any other role. Therefore, in rules, any
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Option Tableau calculus for

-bool Classical propositional logic.

-hl Hybrid logic HL(@) with relational union and composition (Default).
-hlu Like -h1 plus the universal modality.

-met Metric logic without the ‘closer” operator.

—-topo Metric logic with the topology operator but without the ‘closer” operator [4].
-albo ALBO with the unrestricted blocking rule mechanism [5].
—alboid Like —albo plus identity

Table 4.2: Predefined tableau calculi

constant role can only be matched to itself.

Rule application priority

METTEL group the provided rules in two three groups: 1.Non-branching, 2.Non-
Branching and generating new nominal and 3.branching rules. Rules are applied in this
order. The order in which rules inside a group are applied is determined by the order in
which the rules are defined in the input file.

Switching off preprocessing

By default, METTEL does some preprocessing on the user-defined tableau calculus. This
may sometimes result in unexpected behaviour. The preprocessing stage can be omitted
usingthe —tbl—npp option instead of —tbl for inputting the tableau calculus. Therefore,
the command for running METTEL will be as follows:

> java —Jjar mettel.jar [—tbl-—npp <t—fname>] [—i <in—fname>]

4.2 Predefined Tableau Calculi

There are several predefined tableau calculi in METTEL. All these tableau calculi are
sound, complete and decision procedure for their targeted logic. For using these calculi,
METTEL needs to be run with the appropriate option as listed in Table

Command line execution is via:
> java —Jjar mettel.jar [<tableau option>] [—i <in—fname>]

More information about running METTEL can be found in Section 5l In the remain-
der of this section, we provide the preprocessing that applies on problem sets beside the
tableau rules for each calculus.

Preprocessing on the problem set for predefined tableau calculi

When User select one of the predefined tableau calculi other than —bool, formulae in the
problem set preprocessed before tableau derivation. If we assume P and () are formula,
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preprocessing apply the following rules recursively:

TRUE = —-FALSE OP = —(O-P) VUP = —(34=P)
-—P =P PoQ=FP—-QAN(Q—P) P—-Q=-PVvVQ
PAQ=~(—PV-Q) (R*)" = R* -—R=R
(R7)" =R (RVS)" = (R-VS) (RoS)” = (R~ 0857)
(RANS)” = (R™AST) (R*)~ = (R7)* (-R)~ = —=(R™)

Classical propositional logic

Formulae in classical propositional logic are built using the Boolean operators A, V, —, ++ and
—. For using the predefined tableau calculus for classical propositional logic, option —bool
should be used when running METTEL.

> java —jar mettel.jar —bool

By selecting this calculus, METTEL applies the rules from Figure.2|for the tableau deriva-
tion.

P, —-P -—P PAQ -(PAQ)
1 P P, Q -P|-Q
PLQ (P> Q) PVQ (PVQ)
P Q P, =Q P[=PQ -P, =Q
P+ Q (P + Q)
-PvQ, PV-Q “PAQ|PA-Q

Figure 4.2: Predefined tableau rules for classical propositional logic

Hybrid logic with relational union and composition, HL(Q, V, o)

The hybrid logic HL(Q, V, o) is the extension of modal logic with the satisfaction operator
@, relation union V and relational composition o. The satisfaction operator is used to assert
that a formula is true at a world, and it has the form @; where 7 is a nominal. Option —h1
in METTEL selects the predefined tableau calculus for HL(Q, V, o).

> java —jar mettel.jar —hl

When using this option, METTEL uses the rules from Figure [4.3|for the tableau derivation.

This tableau calculus is the default tableau calculus for METTEL, this means if user
runs METTEL without providing any option for tableau calculus, it automatically select
Hybrid logic HL(@) with relational union and composition tableau calculus.

Hybrid logic with relational union, composition and universal modality,
HL(Q, V, 0, u)

For modal logic and hybrid logic problems with the universal modality the option —h1lu
should be used. In this case the predefined tableau calculus for logics with relational
composition and universal modality us used.
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Q; L Q;j Q;—j
T @i @
@P @P@-P @(QP) @-(@P)

J
Qi T QP @;,-P
Q;(PVQ) Q;~(PV Q)
@Q,P | @Q-P,@;Q Q,-P, @,-Q
@,3R.P -(@;3R.P), @;3R.j
Qi P, @3RI, R, P] Q,-P
@ IR~ .j @;~(3R~.P), @,3R.i
@;3R. @,-P
@RV S).P @,~3(RVv S).P
@JR.P|@35P @,~3R.P, @,~35.P
@,3(Ro S).j @;~3(Ro S).P
@ 3Rf[i, R, S, ], Qs1in.s.397 @, ~(3R.3S.P)

Figure 4.3: Predefined tableau rules for hybrid logic HL(Q, V, o)

> java —jar mettel.jar —hlu

The rules for this option are listed in Figure [.4] The rules used with this option are listed

Q; L Q;j Q;—j
T @i @
@P @P@-P @(QP) @-(@P)

% T Q,P Q,~P
@l(P \ Q) @iﬁ(P vV Q)
Q;P | @=P,@;Q @;-P, @;—Q
@,3R.P ~(@,3R.P), @;3R.j
S pnrP. QIR R, P) Q,-P
@,3IR-.j @,~(3R-.P), @,3R.i
Q3R QP
@,3(RV S).P @,~3(RV S).P
@,3R.P | @,3S.P @;—-3R.P, @;—-3S.P
QIR Fi . S.7], Qg ps 397 @,~(3R.35.P)
@,3up @,-3"P, @]
Qg p P Q;-P

Figure 4.4: Predefined tableau rules for hybrid logic HL(Q, V, o, u)

in Figure The rules for this tableau calculus are the ones in Figure [4.3] plus two rules
for positive and negative occurrence of universal modality.
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Metric logic without the “closer’ operator

Metric logic extends the hybrid logic HL(@, V, o, u) with the distance operators 3<% and 3=¢,

for a € Q0. For using the predefined tableau calculus for this logic, option —met should
be used when running METTEL.

> java —jar mettel.jar —met

When using this option, METTEL uses the rules from Figure for the tableau deriva-
tion. The rules for this tableau calculus are the one shown in Figure 4.4 plus the rules for

Q@; L Q;j Q;—y
T @i @
QP  @P,@-P @(QP) @-(QP)
Qi T QP Q,-P
@(PV Q) @~(PV Q)
QP | @-P,Q;Q @;~P, @Q;—~Q
@,3R.P ~(@,3R.P), @;3R.j
Q@ prp Py QIR T, R, P Q;-P
@,3IR~j @~(3R~.P), @;3R.i
@, 3R @, P
@,3(RV S).P @,-3(RV S).P
@,3R.P | Q;35.P @;-3R.P, @;—3S.P
@,3(Ro S).j @;~3(Ro S).P
@3RS R, S]], Oy 539 @, ~(JR3S.P)
@,3uP @-3“P, @;j
QP P Q;-P
@359 @3<9 @Iy @(3<IP)
Q59 @< @350 @ (3°<IP)
@i, @;3<9p @i, @;30<9p
@;3%<94 @, 39<9;

@i, @,v*<4p Qyi, @;vo<Ip
@;3%<9 @;3%<9
@,3°<9), @;3°<"k @,3°59j, @;3%<"k
@i3a<(qu) L @i3a<(qu) k
@,3%<9j, @,3°<", @,3%<9j, @,3°<"k
@i3a<(qu) k @Z_Hag(q\/r) k
@;~(39<4P), @;3%<7j @;~(3054P), @,3°<7j
@;-P @,-P
@;—(3%<9P), @;39<j @;~(30<9P), @39
QP QP

Figure 4.5: Predefined tableau rules for Metric logic without the ‘closer” operator

metric reflexivity, metric symmetry, metric inclusion, metric triangle equality and metric

propagation.
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Metric logic with the topology operator but without the ‘closer” operator

Formulae in this logic are built using the Boolean operators A, V, — and -, the distance
operators 3= and 3=¢, for a € Q>°, and the topological interior and closure operators.

For using the predefined tableau calculus for metric logic with the topology operator but with-
out the ‘closer’, option —topo should be used when running METTEL.

> java —Jjar mettel.jar —topo

When using this option, METTEL uses the rules from Figure 4.6/ for the tableau deriva-
tion. The rules for this tableau calculus are the one shown in Figure {4.5| plus the rules for
topology reflexivity, topology transitivity, topology inclusion, topology triangle equality
and topology propagation.

The first versions of METTEL were designed for this logic. METTEL is still the only tableau
prover that can decide it [4]. METTEL has been compared on a class of metric and topology
problems with the first-order resolution provers SPASS and VAMPIRE, where it performed
better [4].

Description logic ALBO

ALBO is an expressive description logic extending the basic description logic ALC with
the Boolean role operators, inverse of roles, domain and range restriction operators and
nominals (individuals) [5]. The reasoning complexity for ALBO is NEXPTIME-COMPLETE.
It subsumes Boolean modal logic and the two-variable fragment of first-order logic

For using the predefined tableau calculus for description logic ALBO, option —albo should
be used when running METTEL.

> java —jar mettel.jar —albo

When using this option, METTEL uses the rules from Figure[4.7)for the tableau derivation.

The rules for this tableau calculus are the one shown in Figure 4.3) plus the rules for
complement role and the unrestricted blocking rule. This option use unrestricted blocking
rule mechanism as a replacement for loop checking mechanism to ensure termination [5]].
This predefined calculus was introduced in [5] where is was shown that it provides a deci-
sion procedure for ALBO. The only other decision procedure currently known for ALBO
is an approach based on resolution by [11].

Description logic ALBO

The logic for this option is an extention of ALBO that we have introduced in the last section
with role identity. For using the predefined tableau calculus for description logic ACBO @,
option —alboid should be used when running METTEL.

> java —Jjar mettel.jar —alboid

When using this option, METTEL uses the rules from Figure[4.8|for the tableau derivation.
The rules for this tableau calculus are the one shown in Figure 4.4 plus the rules for id role,
role complement, role cut and nominal cut.
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Q; L Q;j Q;—j
T @i Qe
@P @P@-P @(QP) @-(QP)

J
@1 1L Q; P Q;-P
@(PV Q) @~(PV Q)
Q;P | @—-P,Q;Q @;-P, @Q;—~Q
@,AR.P -(@;3R.P), @;3R.j
@f[i7R7p]P, @;3R.f[i, R, P) Q;-P
@;dR~.j @Zﬁ(ERVP), @JERZ
Q;3R.i Q;-P
@,3(RV S).P @,-3(RV S).P
@;,3JR.P | Q;35.P @;,—~4R.P, @;—~4S.P
@;3(Ro S).j @;,-3(Ro S).P
@;3R.f[i, R, S, j], @f[i,R,S,j]HS-j @;—~(3R.3S.P)
@ 3“P Q;-3*P, Q;j
Qi P @;-P

@;39<7j  @3<ej @3y @~(3°<P)
Q350 Q3<% @359 @(3<P)

@i, @;39<IP @i, @;3954p
@;39< @,;39<%

@i, @;ye<ap @i, @;ye<ap
@,3°<7; @,3°<7;
@,39<05, @,30<"; @,30505, @, 30"
@i3a<(q\/r) k @i3a<(qV7~) Lk
@,39<9j, @;3<"k @305, @; <"k
@i3a<(q\/r) L @Z_Hag(q\/r) k
@;—~(3%<9P), @,;3°<"j @;—~(39S4P), @,39<7j
@, -P @, P
@;~(39<9P), @,3°<7j @;—(3%<P), @;30<7j
QP @, -P
@i @0f, @0k @-(30<9) @355, @;0k

@;0i Q; Ok @) @, 3<%
@;~(3%<9P), @;05 @;~(3%S9P), @;05
@, -P @, -P

Figure 4.6: Predefined tableau rules for Metric logic with the topology operator but with-
out the ‘closer” operator
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Q; L Q;j Q;—j
T @i @
@P @P@-P @(@P) @-(@,P)

Qi T Q,P @,-P
@,(PVQ) @,~(PV Q)
@, P | @Q-P,@;Q @Q-P, @,-Q
@,3R.P ~(@;3R.P), @;3R.j
Qi rp P, Q3R.fi, R, P| @,-P
@R~ .j @;~(3R—.P), @;3R.i
@,3R.i @,~P
@,3(RV S).P @,~3(RV S).P
@IRP|@35P @,-3R.P, @,—38.P
@,3(Ro S).j @;-3(Ro S).P
@,3R.fTi, R, 5, ], Qspip.s,135- @,~(3R.35.P)
@i, @,j @3-Rj  @~(3-R.P), Q;j

@ | @~ @=(3R.j) Q3R.j | Qj-P
Figure 4.7: Predefined tableau rules for description logic ALBO
QL @y Q@

L @i @
@P  @P,@-P  @(@P) @-~(@;P)

J
Qi T QP Q,-P
Q;(PVQ) Q@;~(PVQ)
QP | @Q-P,Q;Q @;~P, @;~Q
@,3R.P ~(@3R.P), @,3R.j
@y np Py @3RN, R, P @;-P
Q3R QP
@,3(RV S).P @,~3(RV S).P
@;,dR.P | @, 3S.P @,—~3dR.P, @,—~3S.P
@,3(Ro S).j @,~3(Ro 8).P
@IR. i, R, S, ], @i psg 39, @,~(3R.35.P)
Qi, @5 @3idj  @—(3id.P)
Q5| @iy Q;y @;-P
@,3-R.j @~(3-R.P), @]
@,-~(3R.j) Q,3Rj | Qj-P
@30, P @3 P), @jj
Qrpi,p P Q;-P

Figure 4.8: Predefined tableau rules for description logic ALBO






Five

Running METTEL

The input to METTEL is a tableau calculus specification and a problem set. The tableau
calculus can be either selected from one of the predefined calculi, mentioned in Section[4.2}
or can be defined as explained in Section and then gives to METTEL in an input file.
The problem set can be either provided to the system in an input file or through the
standard input. The user needs to specify the end of the input from standard input stream
by ctrl + D.

Table[5.1|shows the diffegent possibilities of running METTEL.

c’<>\ \\)6&&0“0
&0\ X,{{\Q e
A0 Q‘Qeﬁ\ e
o3¢ SR P 95° Syntax and example
N v/ java —jar mettel.jar [<tableau option>] [—i <in—fname>]
€.g. java —jar mettel.jar —bool —i problemsetl.p.mtl

\/ \/ java —jar mettel. jar [<tableau option>]
€.g. java —jar mettel.jar —bool
P &Q
~ P
(Ctrl + D)
vV v/ Jjava —jar mettel.jar [—tbl <t—fname>] [—i <in—fname>]

€.g. java —jar mettel.jar —tbl tableaul.t.mtl —i probsetl.p.mtl

\/ \/ java —jar mettel.jar [—tbl <t—fname>]
e.g. java —jar mettel.jar —tbl tableaul.t.mtl
P &Q
~ P
(Ctrl + D)

Table 5.1: METTEL runtime options
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Six

METTEL Output

METTEL is a refutation prover. This means when it outputs the unsatisfiable, the input
problem is unsatisfiable with respect to the tableau calculus used. More precisely, when
METTEL has constructed a closed tableau derivation, that is, in each branch a contradiction
was found, METTEL outputs unsatisfiable. As an example, assume we have stored the
sample tableau rules from Section [4.1|in the file sampleTableau.t.mtl and execute the
following command:
> java —Jjar mettel.jar —tbl sampleTableau.t.mtl

box{R} (Q&P) & dia{R}~Q
METTEL produces the output: Unsatisfiable.
On the other hand, when the input problem is satisfiable with respect to the tableau cal-
culus, it outputs satisfiable. More precisely, when METTEL has constructed an open
tableau derivation, that is, one complete branch without contradiction, METTEL outputs
satisfiable. If we run METTEL again with the same calculus but input box{R} (Q&P) &
dia{R}P as problem set the output is:

Satisfiable

MODEL: [ (@{£(n0,R,P) }P), (@{n0}(exists{R}£(n0,R,P))), (@{£(n0,R,P)}(~((~Q)
[ (~P)))), (@{n0}(~((exists{R} ((~Q)|(~P))) | (~(exists{R}P))))), (Q@{n0
}(~(exists{R} ((~Q) | (~P))))), (@{n0}(exists{R}P)), (@{f(n0,R,P)}Q)]

Compact Representation:[(@{f(nO,R,P)}P), (QR{n0} (exists{R}£f(n0,R,P))), (Q{
f(n0,R,P)}0Q)]

As can be seen in this example beside satisfiable message, METTEL presents a model

both in long and compact format. The provided model is the set of formulae which are pro-

duced by the application of the rules on the given problem set branch and did not result

in closure.

Both the model and its compact representation are specified within a pair of square brack-

ets. In the METTEL present nominals nominals are presented within a pairs of curly brack-

ets in the output syntax.

In this example, in order to satisfy dia{R}P, METTEL creates a new nominal, namely the

Skolem term {f (n0,R,P)}, which belong to p that is (@{£f(n0,R,P)}P). This nominal

then connects to the root nominal which is captured by @{n0} (exists{R}£(n0,R,P)).

Then box rule is applied and @ & P is added to the newly generated nominal, that is @{£

(n0,R,P)} (~((~Q) | (~P))). Since P is already true at this nominal, METTEL only adds @

to the set of formula true at this nominal, this is captured by (@{£ (n0, R, P) }Q).

Since every model can be represented only by nominals, relations and propositions that

21
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are correct on them, METTEL also generates a Compact Representation of the model. This is
done by selecting all the grounded literals.
Both output models follow the standard notation of prover outputs, which is responsible
for the large number of parentheses and brackets.

By default, METTEL prints the output on the standard output. The output can be sent to
a file by using option —o followed by the desired output file name when running METTEL.
java —Jjar mettel.jar —bool —i probl.p.mtl —o result—probsetl.p.mtl

The execution of METTEL can be terminated by pressing CTRL+C.



Seven

METTEL Errors

When the execution of METTEL aborts, this maybe be due to the following errors: unex-
pected tokens, unexpected character and insufficient argument.

7.1 Unexpected token

When parsing a user-defined tableau file or problem set, if METTEL parse a word that is
unexpected according to the BNF grammars provided in Figure 3.1 and Figure 4.1} it will
throw an Unexpected token exception. The error message printed to standard output has
the form:

== Unexpected token <source> ===========

(<line>:<column>) unexpected token: <token>

<extra information>

Here, <source> specifies where the error happened which can be either in the user defined
tableau calculus or in the problem set. The second line specifies the position of the unexpected
token and the token itself. In some cases, METTEL provides some extra information to
help the user find and rectify the error. For example, the following error message caused
by attempting to specify a constant nominal in the problem set.

== Unexpected token Problem set =
(1:1) unexpected token: CONSTANT
CONSTANT can be only used at the beginning of tableau definition.

7.2 Unexpected character

7.3 Missing argument

There are options that need to be followed by an argument. As an example, if we use —tbl
option when running METTEL, it should immediately followed by the name of a file that
contains the specification of the tableau calculus. Otherwise, METTEL gives the following
eITor message:

Tableau file name required

The user should then run METTEL again and supply all the required arguments. Options
such as —i, —tbl—npp, —o and —e similarly need to be followed by an argument. They
should be followed by file name for the problem set, file name for the user specified tableau

23



24 CHAPTER 7. METTEL ERRORS

calculus, desired file names for keeping the output and errors. If no argument is given, an
error message is displayed.



Eight

METTEL Examples

In this section, we give examples to demonstrate the use of METTEL. The examples in
Section 8.1-8.14, use predefined tableau calculus and the remaining examples use user-
defined tableau calculus. Each example contains the running command, problem set as
input stream and the output obtained. Some examples are accompanied by related notes
and tips.

8.1 Priority of operators

User should be very careful when he is not sure about the priority of the operators. For
example user may input @n0 P&Q for @n0 (P&Q), while it is actually interpreted as @n1 (
@n0 P)&Q by METTEL where n1 is a new nominal.

= Unary operators have higher priority than binary operators.

8.2 Unsatisfiable example for classical propositional logic

At first we load the MetTeL with the predefined Classical propositional logic tableau calculus
by using the —bool option

> java —jar mettel.jar —bool

Then we type the formula (P1 | P2)& (~P1 & ~P3) followed by Ctrl + D (in Linux) to
test whether it is satisfiable or not. The output is:

Unsatisfiable

This means the given formula was found to be unsatisfiable with respect to the tableau
calculus of classical propositional logic.

I3 problem sets in the input stream should be terminated with Ctrl + D.

8.3 Satisfiable example for classical propositional logic

At first we load the MetTeL with the predefined Classical propositional logic tableau calculus
by using the —bool option

> java —jar mettel. jar —bool

Then we type the formula (P1 | P2)& (~P1 & ~P3) followed by Ctrl + D (in Linux) to
test whether it is satisfiable or not. The output is:

25
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Satisfiable

MODEL: [ ((P1|P2)&((~P1)&(~P3))), ((~P1)&(~P3)), (P1|P2), (~P1l), (~P3), P2]

This means the given formula was found to be satisfiable with respect to the tableau
calculus of classical propositional logic.

055" METTEL does not produce a compact representation of the generated
model for classical propositional logic.

8.4 Unsatisfiable example for hybrid logic HL(Q, V, o)

At first we load the MetTeL with the predefined Hybrid logic HL(Q, Vv, o) tableau calculus
by using the —h1 option

> java —jar mettel.jar —hl

Then we type the formula @i ~(forall{R} (P—>Q)—> (forall{R}P—>forall{R}Q)) fol-
lowed by Ctrl + D (in Linux) to test whether it is satisfiable or not. The output is:

Unsatisfiable

This means the given formula was found to be unsatisfiable with respect to the tableau
calculus of hybrid logic HL(@, V, o).

055" METTEL ignores extra new lines and extra spaces. So the user can even
have an extra line inside one formula or put more than one formula in one
line

8.5 Satisfiable example for hybrid logic HL(Q, V, o)

At first we load the MetTeL with the predefined Hybrid logic HL(Q, Vv, o) tableau calculus
by using the —h1 option

> java —jar mettel.jar —hl

Then we type the formula @i (forall{R}(P—>Q)—>(forall{R}P—>forall{R}Q))//
Comment on hybrid example followed by Ctrl 4+ D (in Linux) to test whether it is sat-
isfiable or not. The output is:

Satisfiable

MODEL: [ (@{i} ((exists{R} (~((~P)1Q))) | ((exists{R} (~P)) | (~(exists{R}(~Q)))))
), (@{i} (exists{R} (~((~P)1Q)))), (@{i}(exists{R}n0)),
(@{i}i), (@{n0} (~((~P)1Q))), (@{n0}(~Q)), (@{nO}P), (R{n0}n0)]

Compact representation:[(@{nO}n0), (Q{i}i), (@{nO0}P), (Q{i} (exists{R}n0)),
(@{n0} (~Q))]

This means the given formula was found to be satisfiable with respect to the tableau
calculus of hybrid logic HL(@, V, o).

I Both in problem set and tableau calculus input files and input stream,
lines starting with \\ are assumed to be comments
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8.6 Unsatisfiable example for hybrid logic HL(Q, V, o, u)

At first we load the MetTeL with the predefined Hybrid logic HL(@, V, o, u) tableau calculus
by using the —h1lu option

> java —jar mettel.jar —hlu

Then we type the formula forall A{R+S+T}~P & exists E{S+R}P followed by Ctri+ D
(in Linux) to test whether it is satisfiable or not. The output is:

Unsatisfiable

This means the given formula was found to be unsatisfiable with respect to the tableau
calculus of hybrid logic HL(@, V, o, u).

05" There are five alternatives names for diamond the operator, and four al-
ternatives name for the box operator, which all cause identical behaviour.
This gives users the flexibility to use the names they prefer.

8.7 Satisfiable example for hybrid logic HL(Q, V, o, u)

At first we load the MetTeL with the predefined Hybrid logic HL(@, V, o, u) tableau calculus
by using the —h1lu option

> java —jar mettel.jar —hlu

Then we type the formula ~ forall (P & ~P) followed by Ctrl + D (in Linux) to test
whether it is satisfiable or not. The output is:

Satisfiable

MODEL: [ (@{n0}n0), (@{n0}(exists ((~P)|P))),
(@{nl} (~P)), (@{nl}nl), (@{nl}((~P)|P))]

Compact representation:[(@{n0}n0),

(@{n1l} (~P)), (@{nl}nl)]

This means the given formula was found to be satisfiable with respect to the tableau
calculus of hybrid logic HL(@, V, o, u).

IS there is a role after the keyword exists ( forall), they form a dimond
(box) operator. But if there is not any role there, it is an existential modality
(universal modality) operator.

8.8 Unsatisfiable example for metric logic

At first we load the MetTeL with the predefined Metric logic without the ‘closer’ operator
tableau calculus by using the —met option

> java —Jjar mettel.jar —met

Then we type the formula ~ ((forall {a<.3}P—>forall{a<.2}forall{a<.1}P)) fol-
lowed by Ctrl 4+ D (in Linux) to test whether it is satisfiable or not. The output is:
Unsatisfiable

This means the given formula was found to be unsatisfiable with respect to the tableau
calculus of metric logic without the ‘closer” operator.
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IS5y Any rational number can be used as attribute, as we have used .3, .2
and .1 in this example.

8.9 Satisfiable example for metric logic

At first we load the MetTeL with the predefined Metric logic without the ‘closer” operator
tableau calculus by using the —met option

> java —jar mettel.jar —met

Then we type the formula P—> forall{a<8} ~ forall{a<l} forall{a<l} forall
{a<1l} forall{a<l} forall{a<l} forall{a<l} forall{a<l} forall{a<l} ~P fol-
lowed by Ctrl + D (in Linux) to test whether it is satisfiable or not. The output is:
Satisfiable

MODEL: [ (@{n0}n0), (@{n0}(~P)),
(@Q{n0} ((~P) | (~(exists{ (a<8) } (~(exists{ (a<l) } (exists{ (a<l) } (exists{ (a<l) }(
exists{ (a<l)} (exists{(a<l)} (exists{ (a<l) } (exists{ (a<l) } (exists{ (a<l)}

P)))))))Ninl

Compact representation:[(@{n0O}n0), (@{nO}(~P))]

This means the given formula was found to be satisfiable with respect to the tableau
calculus of metric logic without the ‘closer” operator.

= METTEL, a metric role is defined using a lower-case identifier and a
parameter and. It is not necessary to write existential as in litrature (x<a
instead of 3(*<4) in literature).

8.10 Unsatisfiable example for metric logic with topology operator

At first we load the MetTeL with the predefined Metric logic with the topology operator
tableau calculus by using the —topo option

> java —jar mettel.jar —topo

Then we type the formula ~ (forall{a<0.1}P—>forall{topo}P) followed by Ctrl + D
(in Linux) to test whether it is satisfiable or not. The output is:

Unsatisfiable

This means the given formula was found to be unsatisfiable with respect to the tableau
calculus of metric logic with the topology operator.

05" [n METTEL topo is the predefined topology role.

8.11 Satisfiable example for metric logic with topology operator

At first we load the MetTeL with the predefined Metric logic with the topology operator
tableau calculus by using the —topo option

> java —jar mettel.jar —topo

Then we type the formula ~ forall{a<=.1}~P—>~forall{topo}forall{a<.1}~P fol-
lowed by Ctrl + D (in Linux) to test whether it is satisfiable or not. The output is:



8.12. UNSATISFIABLE EXAMPLE FOR DESCRIPTION LOGIC ALBO 29

Satisfiable

MODEL: [ (R{nO}n0), (R{nO0}(~P)), (@{n0} (exists{topo}n0)),
(@{n0} ((~(exists{ (a<=1/10)}P)) | (exists{topo} (exists{ (a<1l/10)}P)))),
(@{n0} (~ (exists{ (a<=1/10)}P)))]

Compact representation:[(@{nO}n0), (@{n0}(~P))]

This means the given formula was found to be satisfiable with respect to the tableau
calculus of metric logic with the topology operator.

05" I the model for metric logic problem sets, METTEL shows rational num-
ber in fraction format instead of float format.

8.12 Unsatisfiable example for description logic ALBO

At first we load the MetTeL with the predefined description logic ALBO tableau calculus by
using the —albo option

> java —Jjar mettel.jar —albo

Then we type the formula ~( exists{R}i | exists{~R}i ) followed by Ctri + D (in
Linux) to test whether it is satisfiable or not. The output is:

Unsatisfiable

This means the given formula was found to be unsatisfiable with respect to the tableau
calculus of description logic ALBO.

I55° [n METTEL albo and alboid use unrestricted blocking to ensure termina-
tion. The unrestricted blocking is based on the following rule:
/ /
(ub) - Qe {ey, @i {1’}
Qe{ey | @e-{e}

8.13 Satisfiable example for description logic ALBO

At first we load the MetTeL with the predefined description logic ALBO tableau calculus by
using the —albo option

> java —Jjar mettel.jar —albo

Then we type the formula E{R}p , E{S}p , E{T}~E{T}E{S*}(pl~p), ~E{T}E{~T}~E{
s~} (pl~p) followed by Ctri + D (in Linux) to test whether it is satisfiable or not. The
output is:

Satisfiable

MODEL: [ (@{n0} (exists{R}p)), (@{n0} (exists{S}p)),

(@{n0} (exists{T} (~ (exists{T} (exists{ (S—)}(pl(~P))))))),
(Q{n0} (exists{T}n0)), (@{n0} (~(exists{(S—)}(pl(~P))))),
(@{n0} (~ (exists{ (~T)} (~(exists{(S—) } (Pl (~P))))))),

(@{n0} (~ (exists{T} (exists{ (S—)} (Pl (~P)))))),

(Q{n0} (~ (exists{T} (exists{ (~T) } (~(exists{(S—)} (Pl (~P)))))))),
(@{n0}n0)]
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Compact representation:[(@{nO} (exists{T}n0)), (@{nO}n0), (@R{n0} (exists{R}
P)), (@{n0} (exists{S}p))]

This means the given formula was found to be satisfiable with respect to the tableau
calculus of description logic ALBO.

155" Formulae can be optionally separated with a comma.

8.14 Unsatisfiable example for description logic ALBO

At first we load the MetTeL with the predefined description logic ALBO @ tableau calculus
by using the —alboid option

> java —jar mettel.jar —alboid

Then we type the formula @i exists{id} P @i ~P followed by Ctrl + D (in Linux) to
test whether it is satisfiable or not. The output is:

Unsatisfiable

This means the given formula was found to be unsatisfiable with respect to the tableau
calculus of description logic ALBO with identity.

05" [n METTEL id s the predefined identity role.

8.15 Satisfiable example for description logic ALBO “ with identity

At first we load the MetTeL with the predefined description logic ALBO @ tableau calculus
by using the —alboid option

> java —jar mettel.jar —alboid

Then we type the formula~ ( E{s + ~S} ~E{R} p|E{S + ~S} ~E{R} ~p ) followedby
Ctrl+ D (in Linux) to test whether it is satisfiable or not. The output is:

Satisfiable

MODEL: [ (R{n0} (exists{R} (~p))), (@{nO} (exists{R}n0)),

(@{n0} (exists{R}p)), (@{n0} (exists{S}n0)), (@{n0} (exists{S}p)),

(@{n0} (~ ((exists{ (S+(~S))} (~ (exists{R}p))) | (exists{ (S+(~S))}
(~(exists{R}(~p))))))),

(@{n0} (~ (exists{ (S+(~S)) } (~ (exists{R} (~p)))))),

(@{n0} (~ (exists{ (S+(~S)) } (~ (exists{R}p))))),

(@{n0} (~ (exists{ (~S) } (~ (exists{R} (~p)))))),

(@{n0} (~ (exists{ (~S) } (~(exists{R}p))))),

(@{n0} (~ (exists{S} (~ (exists{R} (~p)))))),

(@{n0} (~ (exists{S} (~ (exists{R}p))))), (@{n0}(~p)), (@{n0}n0),

(@{p} (exists{R} (~p))), (@{p} (exists{R}n0)), (QR{p}(exists{R}p)),

(@{p} (~n0)), (@{pl}P)]

Compact representation:[(@{n0}n0), (Q@{nO0} (exists{R}p)),

(@{n0} (exists{S}n0)), (Q{plp), (Q{p}(exists{R}p)), (@{n0}(~p)),
(@{n0} (exists{S}p)), (@{n0} (exists{R}n0)), (@{p}(~n0)),

(@{p} (exists{R}n0))]
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This means the given formula was found to be satisfiable with respect to the tableau
calculus of description logic ALBO with identity.

05" METTEL follows the priorities we have mentioned in Chapter [2[ unless
the user have specified it otherwise using parenthesis

8.16 Example of incomplete tableau calculus

This example shows how METTEL can be used for experimenting with a new tableau
calculus. Assume that we have proposed the following incomplete calculus for description
logic ALC:

Qi (PI1Q) / { @i P} | {@1LQY};

@i ~(dia{R} P), @i dia{R} j / { @] ~P };

@i dia{R} P / { @f[i,R,P] P, Q@i dia{R} £f[i,R,P] };

@i P, @i ~P / { FALSE };

If we save this calculus into mytableau.t.mtl, and run it on box{R} (Q&P) & dia{R}~Q the
output is:

Satisfiable

MODEL: [ (@{n0} (~ ((exists{R} ((~Q) | (~P))) | (~(exists{R}(~Q))))))]

Compact representation:[]

The answer METTEL gives is incorrect since this problem set is actually unsatisfiable in
description logic ALC. This wrong answer is the result of specifying a tableau calculus
which is not complete. One can see this invalidity more clearly by running METTEL on
the same problem set using one of the applicable predefined calculi, e.g. using —h1 option.
By adding the rule @i (~P & ~Q)/ {@i ~P, Qi ~Q}; to the specification we can make
the tableau calculi complete.

1= Fora complete tableau calculus, there should generally be rules for posi-
tive and negative occurrences of each operators in the logic.

8.17 Example of using constant role

As we have already mentioned, in a tableau calculus specification by default constant roles
are denoted by identifiers which start with a lower-case letter, e.g. r. A constant role r
occurring in a rules only matches with r itself. A variable role on the other hand matches
with all formulae of sort role.

For example, assume that we want to use a specific role in our calculus which is functional.
We can have a tableau rule specified just for this role using a constant role symbol as
follows:

@i exists{r} j, @i exists{r} k /{@j k};

@i P, @i ~P / { FALSE };

In this calculus, the first rule ensures that r is a functional role. We test this calculus using
following problem set.

@a exists {r} b

@a exists {r} c
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@b Q

@c ~Q

The output for this problem set is Unsatisfiable. The nominal b is going to be equal to
c as the result of the first rule application and then the closure rule is applied on @b @ and
@b ~@. If we rerun with the same calculus but with following problem set, the output will
be satisfiable, since the first rule is not applicable anymore.

@a exists {r2} b

@a exists {r2} c

@b Q

@c ~Q

If we want all the roles to be functional we should change the first rule to @i exists{R}
j, @i exists{R} k /{@J k};

I=5” Constant roles should be used to specify properties for specific roles (e.g.
hierarchy, inclusion between two roles).
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