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Tableau-based deduction

Has a long tradition and is a well established method in automated
reasoning

Approach can be successfully used for a large number of logics:

Classical propositional logic, first-order logic, second-
order logic

Non-
classical

modal, description, hybrid, intuitionistic log-
ics, . . . , temporal, propositional dynamic,
fixpoint logics, . . .

Multitude of different tableau approaches:

First-order
logic

Smullyan ground sen-
tence tableau

free-variable tableau,
connection tableau,
disconnection tableau,
hypertableau, . . .

Non-
classical
logics

ground semantic tableau,
tableau avoiding
reference to semantics,
and-or tableau

free-variable tableau

Many implemented systems
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Our interest: Ground semantic tableau calculi for non-classical
logics

Ground semantic tableau calculi = calculi in the style of Smullyan:
Operate on labelled formulae, where the labels refer to elements in
the semantics

Can be used to build models

Are easy to understand, learn and teach

Are easier to develop and provide more flexibility

Basis for decision procedures for many non-classical logics, especially
logics with some kind of tree model property

We became interested in description logics with complex role
operators that do not have any kind of tree model property

Description logic ALBO = ALC with Boolean operators on roles and
nominals

Can be decided with tableau + unrestricted blocking technique
[ISWC07]

Unrestricted blocking is powerful and generic

This has given us hope that tableau-based decision procedures can
be developed systematically for many logics
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Automation of calculus development

Existing work for non-classical logics suggests that it should be
possible to develop tableau calculi systematically for large classes of
logics

many variations

many similarities

important underlying principles tend to be the same

Questions:

Can tableau calculi be developed automatically from the definition of
logics?

Can soundness and completeness be guaranteed?

Can termination be guaranteed?

No, in each case.

But:

Perhaps it is possible to develop tableau calculi automatically under
certain restrictions?
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Problem of interest

Input:
Definition of a logic

Output:
Tableau calculus, which is
sound, complete & terminating

Automatic generation of tableau calculi from the definition of a logic
+ certification of soundness, completeness and termination (if
relevant)

Important issue:
What respectively are sufficient conditions for soundness,
completeness and termination?
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Tableau synthesis framework [TABLEAUX09,LMCS11]

Input:
Definition of a logic

Output:
Tableau calculus, which is
sound, complete & terminating

Our assumptions

The given logic is defined by the specification of its semantics

The specification language of the framework is first-order

Designed for propositional non-classical logics

The generated calculi are ground semantic tableau calculi
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Aim of the course

Overall, to introduce and study the tableau synthesis framework

To describe how users can define their logic in the specification
language of the framework (Day 2)

To introduce the method of generating tableau calculi (Day 3)

To discuss the conditions and underlying theory of guaranteeing
soundness and completeness of the generated tableau calculi (Day
2 & 3)

To study blocking techniques for ensuring termination, including
unrestricted blocking (Day 4)

To consider various case studies of generating tableau calculi for
different logics (throughout & Day 5)
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Content

Treatment is formal and rigorous with emphasis on theoretical
foundations and describing and using the framework

Many examples

Some basic knowledge of propositional logic and first-order logic is
assumed

Some basic knoweldge of the following is an advantage but not
essential:

modal logic, description logic, or other non-classical logics

tableau-based reasoning

Content not as detailed as in ordinary lectures

Thus, please feel free to ask questions anytime !

8 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Introduction & Aim

The Logics

Tableau-Based Deduction

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Day 5: More examples
& METTEL

Appendix

Main reference

Schmidt, R. A. and Tishkovsky, D. (2011), Automated Synthesis of
Tableau Calculi. Logical Methods in Computer Science 7 (2), 1–32.
Short version published in Proc. TABLEAUX 2009, LNCS 5607,
Springer, 310–324 (2009).
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Overview of the rest of this session

Introduction of the logics we use as running examples

Introduction of tableau-based deduction
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The logics

Basic modal logic K

Modal logic S4

Hybrid logic S4(@)

Extension of S4 for determining the admissibility of rules (on Day 5)

Modal logic of some, all and only, K(m)(¬) (on Day 5)
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Modal logic: Background

Established field, long history in mathematics and philosophy

Popular in CS:

program specification & verification, NLP,

multi-agent systems,

description logics, semantic web & ontology reasoning,

. . .

There are non-first-order definable MLs, there are undecidable MLs

But, the commonly used MLs have many good properties:

fragments of FOL, decidable, nice computational complexity

language is simple & natural, powerful enough to describe useful
structures

s1 s2

s3

a

b
c d

e

transition systems

12

5

2

2 4

8

30

22 37

trees
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Basic modal logic K
K = propositional logic plus �,♦

Formulae: φ, ψ −→ p | ⊥ | ¬φ | φ ∨ ψ | �φ
non-empty set of possible worlds

Semantics: Kripke modelM = (W,R, v)
binary relation over W valuation mapping v : P −→ 2W

M, x |= p iff x ∈ v(p)

M, x 6|= ⊥

M, x |= ¬φ iff M, x 6|= φ

M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ

M, x |= �φ iff for all R-successors y of x M, y |= φ

Defined operators: ⊤
def
= ¬⊥, φ ∧ ψ

def
= ¬(¬φ ∨ ¬ψ),

φ→ ψ
def
= ¬φ ∨ ψ ♦φ

def
= ¬�¬φ

Terminology: frame (W,R)
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The modal operators

� and ♦ are the universal and existential quantifiers of modal logic

M, x |= �φ iff
∀y

`

R(x, y)→M, y |= φ
´

x

y1

yn

�φ

φ
·
·
·

φ

φ is a necessity relative to x

M, x |= ♦φ iff
∃y

`

R(x, y) ∧M, y |= φ
´

x y
♦φ φ

·
·

·
·

φ is a possibility relative to x

Also known respectively as the necessity operator and possibility
operator
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Example

SupposeM = (W,R, v) is the Kripke model depicted by:

1 2

3 4

p, q

pq

We have

M, 1 |= ♦q M, 1 |= ♦p

M, 1 |= �q M, 1 |= ¬�p

M, 1 |= ��q? M, 1 |= ��p?
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Varying the semantics

It is possible to obtain new modal logics by varying the underlying
models

Logic Frame conditions of R

KT reflexive: ∀x .R(x, x)

K4 transitive: ∀x, y, z . (R(x, y) ∧ R(y, z))→ R(x, z)

S4 = KT4 reflexive
transitive

S5 = KT45 reflexive
transitive
euclidean: ∀x, y, z . (R(x, y) ∧ R(x, z))→ R(y, z)

KD45 serial: ∀x∃y .R(x, y)
transitive
euclidean

All these logics have the same language as K and the semantics is
defined exactly as for K but the underlying accessibility relation R

satisfies certain frame conditions

In this way infinitely many extensions of K can be defined
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Modal logic S4

S4 = K in which the accessibility relation R is a pre-order

Formulae: φ, ψ −→ p | ⊥ | ¬φ | φ ∨ ψ | �φ

Semantics: Kripke modelM = (W,R, v)

M, x |= p iff x ∈ v(p)

M, x 6|= ⊥

M, x |= ¬φ iff M, x 6|= φ

M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ

M, x |= �φ iff for all R-successors y of x M, y |= φ

R is reflexive: for all x (x, x) ∈ R

R is transitive: for all x, y, z
if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R
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Extending the language of basic modal logic

On the other hand, a number of modal logics have languages which
extend that of basic modal logic

M, x |= �jφ iff for all Rj-successors y of x M, y |= φ
Multiple �j operators:

M, x |= [u]φ iff for all y M, y |= φ
Universal modality [u]:

M, x |= @iφ iff M, y |= φ where y is the denotation of i
Satisfaction operator @i:

M, x |= {i} iff x is the denotation of i
Singleton set operator {·}:

x
@iφ

i
φ

i
{i}

stipulating truth at a named world true at exactly one world
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Extending S4 with the at operator

Hybrid logic S4(@) = S4 plus at operator

Nominals: i

Formulae: φ, ψ −→ p | ⊥ | ¬φ | φ ∨ ψ | �φ | @iφ

Semantics: Kripke modelM = (W,R, v, v0)
valuation mapping
v0 : N −→ W

M, x |= p iff x ∈ v(p)

M, x 6|= ⊥

M, x |= ¬φ iff M, x 6|= φ

M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ

M, x |= �φ iff for all R-successors y of x M, y |= φ

M, x |= @iφ iff M, v0(i) |= φ

R is reflexive and transitive
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Idea of semantic tableaux for propositional logic

Recall, a set N of formulae is true iff
V

N is true
iff every formula in N is true

A set N ∪ {φ ∧ ψ} of formulae is true iff N ∪ {φ ∧ ψ, φ, ψ} is
true

A set N ∪ {φ ∨ ψ} of formulae is true
iff N ∪ {φ ∨ ψ, φ} or N ∪ {φ ∨ ψ, ψ} is true

Similarly for other connectives

Continue expansion until two complementary formulae φ and ¬φ are
found in a set
=⇒ inconsistency detected

20 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Introduction & Aim

The Logics

Tableau-Based Deduction

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Day 5: More examples
& METTEL

Appendix

Example

Is the set N = {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r} satisfiable ?

{p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r}

⇒ {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r, ¬q}

or {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r, ¬r}

⇒ {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r, ¬q, p, ¬(q ∨ ¬r)}

or {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r, ¬r}

⇒ {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r, ¬q, p, ¬(q ∨ ¬r), ¬q, ¬¬r}

or {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r, ¬r}

⇒ {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r, ¬q, p, ¬(q ∨ ¬r), ¬¬r, r}

or {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r, ¬r}

⇒ . . .

There is a lot of duplication
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A tableau derivation for N = {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r}

To avoid duplication, sets are represented as paths of a tree

3. ¬q
5. p

6. ¬(q ∨ ¬r)
7. ¬q
8. ¬¬r
9. r

4. ¬r
...

"""
aaaa

1. p ∧ ¬(q ∨ ¬r)
2. ¬q ∨ ¬r This tableau is not

“fully expanded”,
however the first
“branch” is.
This branch is not
“closed”, hence the
set {1, 2} is
satisfiable. (These
notions will all be
defined below.)
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General form of tableau rules, and rule application

The inference rules, called expansion rules, have the form

X

X1 | . . . | Xn

where X ,Xi denote either one or more formulae

Formulae in X are called premises, and formulae in Xi are called
conclusions or inferred formulae

E1, . . . ,Ek

X1 | . . . | Xn

E1θ = F1, . . . ,Ekθ = Fk for some θ

...
F1

...
Fk

·

...
F1

...
Fk

·
X1θ · · · Xnθ

Whenever the premises of the expansion rule matches formulae
appearing anywhere on a branch, we append the conclusions of the
rule at the leaf of that branch
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Expansion rules for propositional logic

¬ expansion rule:

¬¬φ

φ
append φ

Expansion of conjunctive formulae:

φ ∧ ψ

φ, ψ

¬(φ ∨ ψ)

¬φ, ¬ψ
append both φ and ψ
(resp. ¬φ and ¬ψ)

Expansion of disjunctive formulae:

φ ∨ ψ

φ | ψ

¬(φ ∧ ψ)

¬φ | ¬ψ

append φ and ψ
(resp. ¬φ and ¬ψ) in
two newly created branches

Closure rule:

¬φ, φ

⊥
append ⊥ and
close the branch
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Definition of semantic tableau derivation

Let N = {F1, . . . ,Fn} be a set of formulae.

A semantic tableau (derivation) for N is a marked (by formulae), finite,
unordered tree, inductively defined by:

The tree consisting of a single branch

F1

...
Fn

is a tableau for N
(We do not draw edges if nodes have only one successor)

If T is a tableau for N and T′ results from T by applying a rule to T,
then T′ is a tableau for N

Important assumption: Any rule is applied only once to any set of premises
on each branch
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A formal tableau derivation for N = {p ∧ ¬(q ∨ ¬r), ¬q ∨ ¬r}

3. ¬q 2,∨
5. p 1,∧
6. ¬(q ∨ ¬r) 1,∧
7. ¬q 6,¬∨
8. ¬¬r 6,¬∨
9. r 8,¬¬

4. ¬r 2,∨
...

�
�
�
�

HHHHHH

1. p ∧ ¬(q ∨ ¬r) given
2. ¬q ∨ ¬r given

The left branch is fully expanded and open

Satisfying assignment found in the left branch:

p 7→ true, r 7→ true
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Language of semantic tableau calculi for modal logics

The tableau rules in the semantic tableau calculi for modal logics
operate on labelled formulae

Labelled formulae are defined by:

F −→ ⊥ (contradiction)
| l : φ (labelled modal formula)
| (l, l′) : R (labelled relation)

where l, l′ are labels (constants representing worlds), φ is a modal
formula, R is the accessibility relation

We assume that the only operators occurring in modal formulae are

⊥ ¬ ∨ �
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Tableau calculus for K: Expansion rules

¬ expansion rule:

l : ¬¬φ

l : φ
append l : φ

∨ expansion rule:

l : φ ∨ ψ

l : φ | l : ψ

append l : φ and l : ψ in two
newly created branches

¬∨ expansion rule:

l : ¬(φ ∨ ψ)

l : ¬φ, l : ¬ψ
append both l : ¬φ and l :
¬ψ

Closure rules:

l : ¬φ, l : φ

⊥

l : ⊥

⊥
append ⊥ and
close the branch
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Tableau calculus for K (cont’d): Expansion rules for � formulae

� expansion rule:

l : �φ, (l,u) : R

u : φ
append u : φ

¬� expansion rule:

l : ¬�φ

(l,u) : R, u : ¬φ
’create’ u and append
(l,u) : R and u : ¬φ

where u is a fresh constant

Notes:

¬�φ ≡ ♦¬φ

An inconsequential variation is to use Skolem terms in the ¬� rule
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A sample tableau derivation

A tableau derivation to determine the K-satisfiability of

{ ♦p, �(p→ q) }

6. b : ¬p
8. ⊥ 4, 6, cl

7. b : q 5,∨

������
XXXXXX

1. a : ¬�¬p given
2. a : �(¬p ∨ q) given
3. (a, b) : R 1,¬�
4. b : p 1,¬�
5. b : ¬p ∨ q 2,3,�

The left branch is closed; the right branch is fully expanded and
open

Model found in the right branch: a b
p,q

30 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Introduction & Aim

The Logics

Tableau-Based Deduction

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Day 5: More examples
& METTEL

Appendix

Important notions

A branch in a tableau is a maximal path from the root to a leaf

A branch in a tableau is called closed, if it contains ⊥
Otherwise the branch is called open

A tableau is called closed, if all branches are closed

A branch B in a tableau is called fully expanded (or complete), if for
each non-atomic formula φ, with l : φ on B there is a node in B at
which the expansion rule for l : φ has been applied

A tableau is called fully expanded (or complete), if each branch is
closed or fully expanded

Notation: For a tableau calculus Tab and a set of labelled
formulae N, Tab(N) denotes a fully expanded tableau for N
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Another tableau derivation

A tableau derivation to determine the K-unsatisfiability of

{ ♦p, �(p→ q), �¬q }

7. b : ¬p
9. ⊥ 5, 7, cl

8. b : q 6,∨
10. b : ¬q 3, 4,�
11. ⊥ 8, 10, cl

������
XXXXXX

1. a : ¬�¬p given
2. a : �(¬p ∨ q) given
3. a : �¬q given
4. (a, b) : R 1,¬�
5. b : p 1,¬�
6. b : ¬p ∨ q 2,4,�

The left branch is closed; the right branch is closed
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Important properties all calculi should have
Any deduction calculus should be proved sound and (refutational)

complete

A tableau calculus Tab is sound iff

N is satisfiable =⇒ each fully expanded tableau Tab(N) is open

It suffices to prove: Every rule X/X1 | . . . | Xn is sound:

X is satisfiable =⇒ one of the Xi is satisfiable

Then, given a model satisfying N and a tableau Tab(N), it is
possible to find an open branch in Tab(N)

Tab is refutationally complete iff

N is unsatisfiable =⇒ there is a closed tableau Tab(N)

It suffices to prove: Given an arbitrary N and an open, fully
expanded branch B in Tab(N), construct a model from B which
satisfies N
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Soundness and refutational completeness

Theorem 1 (Soundness and refutational completeness of calculus for K)

A set {φ1, . . . , φn} of modal formulae is K-unsatisfiable iff the tableau
calculus TabK can be used to construct a closed tableau for
N = {a : φ1, . . . ,a : φn}, where a is a fresh constant

More precisely:

N is unsatisfiable iff all branches of any tableau Tab(N) constructed for it
are closed

N is satisfiable iff there is an open, fully expanded branch in
some tableau Tab(N) constructed for it

Proof confluence implies that in fact

N is satisfiable iff there is an open, fully expanded branch in
any tableau Tab(N) constructed for it
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Proof confluence

A tableau calculus Tab is proof confluent iff

N is unsatisfiable =⇒ any partial Tab-tableau for N can be ex-
panded into a closed Tab(N)

Essentially there are no dead-ends in the proof search. I.e., which of
the potentially many fully expanded tableaux one computes does not
matter.

Theorem 2

The calculus TabK is proof confluent for modal formulae

Theorem 3

Smullyan’s ground sentence tableau calculus is proof confluent for
first-order formulae
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Termination

Theorem 4

For K, every fully expanded tableau TabK(N) is finitely bounded (for N
finite)

Thus: For modal logic K the construction of fully expanded tableau
derivations terminates =⇒ provides decision procedure for K

The theorem states a strong form of termination

A tableau calculus Tab is strongly terminating iff
for any finite set N, every fully expanded tableau
Tab(N) is finite

Tab is weakly terminating iff
for any finite set N, every closed tableau Tab(N) is
finite and every open tableau Tab(N) has a finite
open branch
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Outline

2 Day 2: The specification languages of the framework
The object language for specifying the syntax of the given logic
The meta-language for specifying the semantics of the logic
Semantic specifications
Normalised semantic specification
Extracting expression orderings from normalised semantic specifications
Well-defined semantic specification
Model structures and first-order definability

In this section we discuss formal languages for representation of
syntaxes and semantics of propositional logics. Since semantic
specification language is a first-order language we consider a notion of
standard first-order models of the language and reduce it to a notion of
propositional models usually used for modal, description and other
non-classical propositional logics.

Further, we introduce conditions for semantic specifications which will
be sufficient for soundness and completeness of generated tableau
calculi.
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Propositional (Many-Sorted) Logical Languages

Modal logic (K, S4, etc)

Propositional variables: p0, p1, . . .

Connectives: ⊥, ∧, ¬,�.
Sorts: Formulae

Hybrid logic, e.g. S4(@)

Propositional variables: p0, p1, . . .
Nominals: i0, i1, . . .

Connectives: ⊥, ∧, ¬,�, @.
Sorts: Formulae and nominals

Dynamic modal logic

Propositional variables: p0, p1, . . .
Relational variables: r0, r1, . . .
Connectives: ⊥, ∧, ¬, ∀·., ∪ (relational union), ; (relational composition), etc.

Sorts: Formulae and relations

Logical languages consist of one or more sorts.
Each sort is built over its own set of variables with use of connectives.
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Primary and Secondary Sorts

A logical language comprises a single primary sort and possibly
several secondary sorts.

Expressions of the primary sort are “meaningful” expressions which
stand for properties of objects in given application domain.

Modal, Hybrid, Dynamic logic: sort of formulae.

Expressions of secondary sorts are only allowed to form other
expressions.

Hybrid logic: sort of nominals.

Dynamic logic: sorts of relations.
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Running Example: S4 with @ Operator
Syntax

S4(@) is an extension of modal logic S4 with nominals and the
@-connective.

S4(@) is a sublogic of the hybrid S4 where nominals are allowed to
appear only in the @-connective.

S4(@) is built over

a countable set of nominals N = {i, j, i0, i1, . . .} and

a countable set of propositional variables P = {p, q,p0, p1, . . .}

Sorts of S4(@):

Nominals i, j

Formulae φ,ψ
def
=⊥ | p | ¬φ | φ ∨ ψ | �φ | @iφ.

Connectives ⊤, ∧,→ and ♦ are definable connectives, e.g.
♦φ

def
=¬�¬φ.
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Running Example: S4 with @ Operator
Sematics

Kripke modelM = (W,R, ν, ν0)

R ⊆ W2, ν : P −→ 2W , ν : N −→ W

M, x |= p iff x ∈ v(p)

M, x |= @jφ iff M, v0(j) |= φ

M, x 6|= ⊥

M, x |= ¬φ iff M, x 6|= φ

M, x |= φ ∨ ψ iff M, x |= φ orM, x |= ψ

M, x |= �φ iff for all R-successors y of x, M, y |= φ

R is a pre-order (reflexive and transitive).
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Specification Languages of the Framework

Object specification language for specifying syntax of a logic.

Semantic specification language for specifying semantics of a logic
which syntax is specified in the object language.
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Object Specification Language of the Framework

L = propositional many-sorted language:

{0, 1, . . . ,N} = an index set of sorts. 1 = primary sort

A countable set of the logical connectives.

Sort of a m-ary connective (m ≥ 0):

(i1, . . . , im, i) ∈ {0, 1, . . . ,N}
m+1.

Notation: (i1, . . . , im) 7→ i.

Agreement: 0-ary connective of a sort 7→ i = constant of the sort i.

Li = expressions of the sort i = 0, . . . ,N:

a countable set of variables pi
0
, pi

1
, . . .;

For every connective σ of a sort (i1, . . . , im) 7→ i,
σ(E1, . . . ,Em) ∈ Li whenever E1 ∈ Li1 , . . . ,Em ∈ Lim .

L
def
=

S

i∈SortsL
i.
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Examples

Modal Logic (K, S4, etc)

formulae = expressions of
the sort 1

connectives :

sort 1: ⊥

sort 1 7→ 1: ¬,�

sort (1, 1) 7→ 1: ∨

Dynamic Modal Logic

formulae = expressions of
the sort 1

relations = expressions of
the sort 2

connectives :

sort 1: ⊥

sort 1 7→ 1: ¬

sort (1, 1) 7→ 1: ∨

sort (2, 1) 7→ 1: [·]

Language for Hybrid Logic S4(@)

Connectives:

¬ and� of the sort 1 7→ 1,
∨ of the sort (1, 1) 7→ 1,
⊥ of the sort 1,

@ of the sort (0, 1) 7→ 1.

Formulae = expressions of the sort 1
Nominals = expressions of the sort 0
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Semantic Specification Language = Many-Sorted First-Order
Language

FO(L) = an extension of L with

a sort N + 1 which is called domain sort:

variables x, y, z, . . . of the sort N + 1

constants a, b, c, . . . of the sort N + 1

predicate symbols P,Q,R . . . on the sort N + 1

function symbols f , g,h, . . . which act on the sort N + 1

the equality predicate symbol ≈

symbols ν0, . . . , νN = “interpretation” symbols:

ν0 = a function symbol from the sort 0 to the sort N + 1

νn (n > 0) = “holds” predicate,
a predicate symbol which accepts arguments
(E, t1, . . . , tn)
for an expression E of the sort n
and terms t1, . . . , tn of the sort N + 1.

FO(L) is a many-sorted first-order language where connectives of L are
transformed into functional symbols of appropriate sorts with added
"interpretation" symbols ν0, . . . , νN .
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Example: Semantic Specification Language for S4(@)

N = 1.

The sort 0 = nominals.

The sort 1 = formula terms.

The sort 2 = domain sort (N + 1 = 2).

The functional symbols obtained from the connectives of S4(@):

a constant ⊥ (of the sort 1),
unary functional symbols ¬ and � of the sort 1 7→ 1,
binary functional symbol ∨ of the sort (1, 1) 7→ 1,

binary functional symbol @ of the sort (0, 1) 7→ 1,

A constant binary predicate symbol R (of the sort (2,2)).

The equality symbol ≈.

The “interpretation” symbols ν0, ν1:

for every nominal i,
ν0(i) is a term of the sort 2,
for every S4(@) formula φ and a term t of the sort 2,
ν1(φ, t) is an atomic formula of FO(S4(@)).
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Notation

A sequence of first-order variables: w
def
= w1, . . . ,wn for some n > 0.

Universal quantifier prefix: ∀w
def
= ∀w1 · · · ∀wn.

φ(w) indicates that all the free variables of the first-order formula φ
are belong to the set {w1, . . . ,wn}.

Universal closure of a set of formulae S:

∀S
def
= {∀w φ(w) | φ(w) ∈ S}.
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L-Open Formulae = Unbounded Formulae wrt L

Formulae of FO(L) in which all occurrences of the L-variables of
sorts i = 0, . . . ,N are free are called L-open formulae.

An L-open sentence is an L-open formula that does not have free
occurrences of variables of the domain sort N + 1.

Example 5

LS4(@)-open formula but not LS4(@)-open sentence:

∃y (ν1(�p, y) ∧ R(x, y))

LS4(@)-open sentence:

∃y (ν1(�p, y) ∧ ∀xR(x, y))

Not LS4(@)-open formulae:

∀p∀y (ν1(�p, y) ∧ R(x, y)) and ∃i (ν1(@ip, y) ∧ ν0(i) ≈ y))
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Connective Definitions
Let S be any set of L-open sentences in FO(L) and σ be a

connective.

A FO(L)- formula φσ defines a connective σ with respect to a set of
L-open sentences S if it does not contain σ and the following holds:

∀S |= ∀p ∀x (νn(σ(p), x) ≡ φσ(p, x)).

σ-definition with respect to S:

∀x (νn(σ(p), x) ≡ φσ(p, x)),

Example: � Connective

�-definition:

∀x
`

ν1(�p, x) ≡ ∀y (R(x, y)→ ν1(p, y))
| {z }

φ�

´

.
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Semantic Specification

Definition 6

A (first-order) semantic specification of the object language L is a set S of
L-open FO(L)-sentences defining all the connectives of L.

We assume that any semantic specification includes the equality axioms.
Equality axioms

∀x (x ≈ x) ∀x ∀y (x ≈ y → y ≈ x) ∀x ∀y ∀z (x ≈ y ∧ y ≈ z → x ≈ z)

∀x ∀yi (P(x) ∧ xi ≈ yi → P(x1, . . . , xi−1, yi, xi+1, . . . , xn))

∀p ∀x ∀yi (νn(p, x) ∧ xi ≈ yi → νn(p, x1, . . . , xi−1, yi, xi+1, . . . , xn))

∀p ∀x ∀yi (xi ≈ yi → f (p, x) ≈ f (p, x1, . . . , xi−1, yi, xi+1, . . . , xn))

Every semantic specification S is associated with its set of connective
definitions S0.
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A Very Common Semantic Specification

S = S0 ∪ Sb.

S0 = connective definitions (for every connective σ):

∀x (νn(σ(p), x) ≡ φσ(p, x)).

Sb = background theory: no non-atomic L-expressions.

Sb contains the usual equality axioms.
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Example: Semantic Specification of S4(@)

Connective definitions in S0
S4(@)

∀x
`

ν1(⊥, x)≡⊥
´

∀x
`

ν1(¬p, x)≡¬ν1(p, x)
´

∀x
`

ν1(p ∨ q, x)≡ ν1(p, x) ∨ ν1(q, x)
´

∀x
`

ν1(�p, x)≡ ∀y
`

R(x, y)→ ν1(p, y)
´´

∀x
`

ν1(@ip, x)≡ ν1(p, ν0(i))
´

Reflexivity and transitivity axioms in Sb
S4(@)

∀x R(x, x)

∀x∀y∀z
`

(R(x, y) ∧ R(y, z))→ R(x, z)
´

+the equality axioms for FO(S4(@))
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Normalised Semantic Specification

Normalisation is required to reduce sentences in a semantic specification
to implicative forms which are convenient for generating tableau rules.

Definition 7

S is normalised iff S = S+ ∪ S− ∪ Sb, where S+, S− and Sb are disjoint
sets of sentences satisfying the following:

S+ is a set of L-open sentences of the form:

ξE+
def
= ∀x (νn(E(p1, . . . , pm), x)→ φE

+(p1, . . . ,pm, x)).

S− is a set of L-open sentences of the form:

ξE−
def
= ∀x (φE

−(p1, . . . ,pm, x)→ νn(E(p1, . . . ,pm), x)).

All L-expressions occurring in Sb are atomic.

Note that E can be any expression, not necessarily of the form σ(p).

Every normalised semantic specification S includes a background theory
Sb but may not coincide with S0 ∪ Sb.

53 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Day 2: The specification
languages of the
framework

The object language for
specifying the syntax of the
given logic

The meta-language for
specifying the semantics of
the logic

Semantic specifications

Normalised semantic
specification

Extracting expression
orderings from normalised
semantic specifications

Well-defined semantic
specification

Model structures and
first-order definability

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Day 5: More examples
& METTEL

Appendix

Example: Normalising SS4(@)

Decomposing the connective definitions in S0
S4(@) into S+

S4(@)
-sentences

and S−

S4(@)-sentences as follows.

S+
S4(@)-sentences:

∀x
`

ν1(⊥, x)→⊥
´

∀x
`

ν1(¬p, x)→¬ν1(p, x)
´

∀x
`

ν1(p ∨ q, x)→ ν1(p, x) ∨ ν1(q, x)
´

∀x
`

ν1(�p, x)→∀y
`

R(x, y)→ ν1(p, y)
´´

∀x
`

ν1(@ip, x)→ ν1(p, ν0(i))
´

S−

S4(@)-sentences:

∀x
`

⊥→ ν1(⊥, x)
´

∀x
`

¬ν1(p, x)→ ν1(¬p, x)
´

∀x
`

ν1(p, x) ∨ ν1(q, x)→ ν1(p ∨ q, x)
´

∀x
`

∀y
`

R(x, y)→ ν1(p, y)
´

→ ν1(�p, x)
´

∀x
`

ν1(p, ν0(i))→ ν1(@ip, x)
´
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Induced Expression Ordering

Well-founded expression ordering will be needed for the termination proof.

Definition 8

For a normalised semantic specification S, S-induced relation ≺ is the
smallest transitive relation on L-expressions such that for all expressions
E′ and E,
E′ ≺ E whenever for some L-substitution θ and for some sentence ξF+
(ξF−) in S,

E = Fθ and

E′ occurs in φF
+θ (φF

−θ, respectively).

The reflexive closure of ≺ is denoted by �.

In general, ≺ is not an ordering.

Usually ≺ is well-founded ordering

(because of the standard inductive way of defining interpretations).
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Example: Subexpression Ordering for S4(@)

≺ is the smallest transitive ordering which satisfies for all nominals i

and formulae φ and ψ:

φ ≺ ¬φ [∀x (ν1(¬p, x)→ ¬ν1(p, x))]

φ ≺ φ ∨ ψ [∀x (ν1(p ∨ q, x)→ (ν1(p, x) ∨ ν1(q, x))]

ψ ≺ φ ∨ ψ

φ ≺ �φ [∀x (ν1(�p, x)→ ∀y (R(x, y)→ ν1(p, y)))]

i ≺ @iφ [∀x (ν1(@ip, x)→ ν1(p, ν0(i)))]

φ ≺ @iφ

≺ is a subexpression ordering and, hence, it is well-founded!
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Subexpression Operator

sub≺(E)
def
={E′ | E′ ≺ E} and sub≺(X)

def
=

S

E∈X sub≺(E).

sub≺(X) is the set of all expressions ≺-smaller than some
expression in X .

An operator sub (which maps sets of expressions to sets of
expressions) is finite if sub(X) is finite for every finite set of
expressions X .

Consequence of König’s Infinity Lemma

If ≺ is finitely branching and well-founded ordering then sub≺ is finite.

If, in normalised semantic specification S, the set S+ ∪ S− is finite
then ≺ is finitely branching.

If, in normalised semantic specification S, all φE
+ and φE

− contain only
atomic L-expressions then ≺ is well-founded.
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Notation

ΦE
+

def
={φF

+θ | E = Fθ for some ξF+ from S},

ΦE
−

def
={φF

−θ | E = Fθ for some ξF− from S}.

Example 9

Φ
�(p∨q)
+ = Φ

�(p∨q)
− = {∀y (R(x, y)→ ν1(p ∨ q, y))}.
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Notation

S↾X
def
={φθ | φ ∈ S , θ is L-substitution and

all L-expressions occurring in φθ belong to X},

Example 10

S
def
= {ν1(@ip, y), ν1(¬p, x)} and X

def
= {i0,p0,p,p ∨ p0,@i0p0}.

Instantiations of formulae in S relative to X :

ν1(@i0p0, x), ν1(@i0p, x), ν1(@i0(p ∨ p0), x), ν1(@i0@i0p0, x),

ν1(¬p0, x), ν1(¬p, x), ν1(¬(p ∨ p0), x), ν1(¬@i0p0, x).

S↾X = {ν1(@i0p0, y)}.
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Well-Defined Semantic Specification

Well-defined semantic specification will allow to generate a sound and
complete tableau calculus.

Definition 11 (Well-definedness)

A semantic specification S is well-defined iff S is normalised and the
following conditions are all true.

1 ∀S0, ∀Sb |= ∀S,

2 the relation ≺ induced by S is a well-founded ordering, and

3 for every expression E = σ(p)θ,

∀S0,Sb↾sub≺(E) |= ∀x
““

V

ΦE
+ → φσθ

”

∧
“

φσθ →
W

ΦE
−

””

.

It is enough to check the third condition for such E that ξE+ ∈ S or
ξE− ∈ S.

If S is finite and there are only finite number of connectives, the third
condition can be rewritten into a first-order formula!
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Example

Since SS4(@) = S0
S4(@) ∪ Sb

S4(@),

∀S0
S4(@),∀S

b
S4(@) |= ∀SS4(@).

≺ (induced by SS4(@)) is the direct subexpression ordering and,
hence, well-founded.

Recall that Φ�p
+ = Φ�p

− = {∀y (R(x, y)→ ν1(p, y))}, and

φ�(p, x) = ∀y (R(x, y)→ ν1(p, y)).

The formula

∀x
““

^

Φ�p
+ → φ�(p, x)

”

∧
“

φ�(p, x)→
_

Φ�p
−

””

is a tautology.

Similarly for other connectives.

Any semantic specification S in the form S = S0 ∪ Sb is usually
well-defined!
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Model

A FO(L)-model is a usual first-order model
for the many-sorted language FO(L):

I
def
= (∆I

0 , . . . ,∆
I
N+1,P

I , . . . , fI , . . . , σI , . . . , νI0 , . . . , ν
I
N)

where

∆I
0 , . . . ,∆

I
N ,∆

I
N+1 are non-empty sets,

PI ⊆ (∆I
N+1)

m, where m is the arity of P,

fI : (∆I
N+1)

m −→ ∆I
N+1 for every m-ary function symbol f ,

σI : ∆I
i1
× · · · ×∆I

im
−→ ∆I

i for every connective σ of a sort
(i1, . . . , im) 7→ i,

ν0(ℓ)
I ∈ ∆I

N+1 for every ℓ ∈ L0,

νIn ⊆ ∆I
n × (∆I

N+1)
n, for 0 < n ≤ N.
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Standard Notions of Valuation and Truth in a Model

A valuation in a model I is a mapping ι from the set of variables and
constants of each sort n = 0, . . . ,N + 1 of FO(L) to the
corresponding ∆I

n .

Lift valuation to all terms:

ιf (t1, . . . , tn)
def
= f

I(ιt1, . . . , ιtn)

for any functional symbol f (including symbols turned from
connectives).

For any predicate symbol p (including νn)

I, ι |= p(t1, . . . , tn) iff (ιt1, . . . , ιtn) ∈ p
I .

Lift interpretation to all formulae:

I, ι |= ¬φ iff I, ι 6|= φ

I, ι |= φ ∨ ψ iff I, ι |= φ or I, ι |= ψ

I, ι |= ∀xφ iff I,κ |= φ for every valuation κ such that
ιy = κy for every variable y 6= x.

Notation: I, ι |= S iff I, ι |= φ for every formula φ in S .
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L-Structure

Recall that Li is the set of logical expressions of the sort i.

Because L-connectives become functional symbols of FO(L),
Li is also the set of all terms of the sort i in the language FO(L).

An L-structure is a FO(L)-model which has the shape

I
def
= (L0, . . . ,LN ,∆I ,PI , . . . , fI , . . . , σI , . . . , νI0 , . . . , ν

I
N).

Simplified notation:

I
def
= (∆I ,PI , . . . , fI , . . . , νI0 , . . . , ν

I
N).

Even simpler:

I
def
= (∆I ,PI , . . . , fI , . . . , νI).

A very similar notation is used for models of modal and description
logics!

L-frame: F
def
=(∆I ,PI , . . . , fI , . . .).

L-structure is a special FO(L)-model.

L-structure serves as a model for the language L.
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Canonical Valuation in L-Structure

A valuation ι in an L-structure is canonical if every variable and
constant of any sort i = 0, . . . ,N is mapped to itself.

A canonical valuation maps any term of any sort i = 0, . . . ,N to the
term itself.
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Main Theorem about L-Open Formulae

Theorem 12

For every FO(L)-model J and a valuation ι there is an L-structure I and
a canonical valuation κ such that for any L-open formula φ

J , ι |= φ iff I,κ |= φ.

Classes of FO(L)-models and L-structures cannot be distinguished by an
L-open formula.

We consider only L-open formulae.

We do not care about canonicity of valuations.
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First-Order Definable Logic

An exact meaning of first-order definability for propositional logics:

Definition 13 (First-Order Definability)

A logic L in the language L is first-order definable iff there is a semantic
specification SL in the language FO(L) such that

L = {E ∈ Ln | ∀SL |= ∀x νn(E, x)} for some n = 0, . . . ,N.

In the case of modal logics:

L = {A ∈ L1 | ∀SL |= ∀x ν1(A, x)}.
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Well-Known Facts

Every semantic specification defines a class of FO(L)-models (or,
equivalently, L-structures) on which it is true.

There are classes of FO(L)-models for which there are no semantic
specifications.

In general, a semantic specification for given class of FO(L)-models
is not unique.
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Session Summary

We introduced two specification languages:

L — object language for specification of syntax of a logic and

FO(L) — first-order language for specification of semantics of a logic.

We defined the notion of semantic specification.

We formalised the notion of “first-order definable logic”.

We introduced the notions of normalised and well-defined semantic
specification.

We demonstrated the new definitions on the example of S4(@) and
saw that many standard logics have well-defined semantic
specification.
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Our running example S4(@): The standard definition

Nominals: i

Formulae: φ, ψ −→ p | ⊥ | ¬φ | φ ∨ ψ | �φ | @iφ

Semantics: Kripke modelM = (W,R, v, v0)

valuation mapping v : P −→ 2W
valuation mapping
v0 : N −→ W

M, x |= p iff x ∈ v(p)

M, x 6|= ⊥

M, x |= ¬φ iff M, x 6|= φ

M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ

M, x |= �φ iff for all R-successors y of x M, y |= φ

M, x |= @iφ iff M, v0(i) |= φ

R is reflexive and transitive
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Specification of S4(@) in the framework

S0: Definitions of the semantics of the connectives

∀x
ˆ

ν1(⊥, x) ≡ ⊥
˜

∀x
ˆ

ν1(¬p, x) ≡ ¬ν1(p, x)
˜

∀x
ˆ

ν1(p ∨ q, x) ≡ ν1(p, x) ∨ ν1(q, x)
˜

∀x
ˆ

ν1(�p, x) ≡ ∀y
`

R(x, y)→ ν1(p, y))
˜

∀x
ˆ

ν1(@ip, x) ≡ ν1(p, ν0(i))
˜

Sb: Background theory specifying the frame conditions of R

∀x R(x, x)

∀x∀y∀z (R(x, y) ∧ R(y, z)→ R(x, z))
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Extracting tableau rules

Definition of semantics of connective σ:

∀x
ˆ

νn(σ(p), x) ≡ φ(p, x)
˜

Take the left-to-right implication of the definition of a connective

∀x
ˆ

νn(σ(p), x) → φ(p, x)
˜

Eliminate quantifiers, Skolemise if needed, and rewrite into this form

νn(σ(p), x) →
J

_

j=1

Kj
^

k=1

ψjk

Rewrite as this rule:

νn(σ(p), x)

ψ11, . . . , ψ1K1
| · · · | ψJ1, . . . , ψJKJ

ψjk = literal
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Extracting tableau rules (cont’d)

Do the same for the right-to-left implication:
Take the contra-positive (!), eliminate quantifiers, Skolemise if
needed, and rewrite to implicational DNF and as rule:

¬νn(σ(p), x)

ψ11, . . . , ψ1K1
| · · · | ψJ1, . . . , ψJKJ

For each formula in the background theory Sb:
Eliminate quantifiers, Skolemise if needed, and transform into DNF;
then turn into one rule:

ψ11, . . . , ψ1K1
| · · · | ψJ1, . . . , ψJKJ
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Extracting rules for S4(@)

Conversion for left-to-right definition of �:

∀x
ˆ

ν1(�p, x)→ ∀y
`

R(x, y)→ ν1(p, y)
´ ˜

ν1(�p, x)→ .¬R(x, y) ∨ ν1(p, y)

ν1(�p, x)

¬R(x, y) | ν1(p, y)

Conversion for right-to-left definition of �:

∀x
ˆ

ν1(�p, x)← ∀y
`

R(x, y)→ ν1(p, y)
´ ˜

∀x
ˆ

¬ν1(�p, x)→ ¬∀y
`

R(x, y)→ ν1(p, y)
´ ˜

¬ν1(�p, x)→ .R(x, f (p, x)) ∧ ¬ν1(p, f (p, x))

¬ν1(�p, x)

R(x, f (p, x)), ¬ν1(p, f (p, x))

f is fresh =⇒ automatic way to force new concrete element to be
introduced 74 / 439
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Extracting rules for S4(@) (cont’d)

Conversion of the frame properties in the background theory:
Reflexivity

∀xR(x, x)

R(x, x)

R(x, x)

Conversion of the frame properties in the background theory:
Transitivity

∀x∀y∀z
`

R(x, y) ∧ R(y, z)→ R(x, z)
´

¬R(x, y) ∨ ¬R(y, z) ∨ R(x, z)

¬R(x, y) | ¬R(y, z) | R(x, z)
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Closure rules

In general, include:

νn(p, x), ¬νn(p, x)

⊥
for each sort n ≥ 1

P(x), ¬P(x)

⊥
for each constant predicate symbol P

For S4(@), include:

ν1(p, x), ¬ν1(p, x)

⊥

R(x, y), ¬R(x, y)

⊥
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Default equality rules

Include (for each sort n, constant predicate symbol P, Skolem
function f ):

≈ is an equivalence:

x ≈ x

x ≈ y

y ≈ x

x ≈ y, y ≈ z

x ≈ z

Predicate substitutivity:

x ≈ y, νn(p, x1, . . . xi−1, x, xi+1, . . . , xn)

νn(p, x1, . . . , xi−1, y, xi+1, . . . , xn)
n ≥ 1

x ≈ y, P(x1, . . . xi−1, x, xi+1, . . . , xn)

P(x1, . . . , xi−1, y, xi+1, . . . , xm)

Functional substitutivity:

i ≈ j

ν0(i) ≈ ν0(j)

x ≈ y

f (p, x1, . . . xi−1, x, xi+1, . . . , xm) ≈ f (p, x1, . . . xi−1, y, xi+1, . . . , xm)

Remark: These rules can be obtained using rule synthesis (and rule
refinement, see later) from the standard equality axioms77 / 439
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Default equality rules for S4(@)

≈ is an equivalence:

x ≈ x

x ≈ y

y ≈ x

x ≈ y, y ≈ z

x ≈ z

Predicate substitutivity:

x ≈ y, ν1(p, x)

ν1(p, y)

x ≈ y, R(x, x2)

R(y, x2)

x ≈ y, R(x1, x)

R(x1, y)

Functional substitutivity:

i ≈ j

ν0(i) ≈ ν0(j)

x ≈ y

f (p, x) ≈ f (p, y)
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Generated tableau calculus

Generated tableau calculus TabS consists of:

Decomposition rules generated from definitions in S0

Theory rules generated from the background theory Sb

Closure rules

Default equality rules (if ≈ was used in S and/or blocking is required)

Using a generated tableau calculus:

Is φ satisfiable wrt. S ?

=⇒ Construct a tableau derivation for ν1(φ,a)

Note: φ is a formula of the primary sort, by assumption sort 1
a = Skolem constant for ∃x in ∃x ν1(φ, x)

Is φ satisfiable wrt. SS4(@) ?

=⇒ Start the tableau derivation with ν1(φ,a)
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The generated tableau calculus for S4(@)

Decomposition rules

ν1(⊥, x)

⊥

¬ν1(⊥, x)

¬⊥

ν1(¬p, x)

¬ν1(p, x)

¬ν1(¬p, x)

ν1(p, x)

ν1(p ∨ q, x)

ν1(p, x) | ν1(q, x)

¬ν1(p ∨ q, x)

¬ν1(p, x), ¬ν1(q, x)

ν1(�p, x)

¬R(x, y) | ν1(p, y)

¬ν1(�p, x)

R(x, f (p, x)), ¬ν1(p, f (p, x))

ν1(@ip, x)

ν1(p, ν0(i))

¬ν1(@ip, x)

¬ν1(p, ν0(i))

Theory rules

R(x, x) ¬R(x, y) | ¬R(y, z) | R(x, z)

Closure rules

ν1(p, x), ¬ν1(p, x)

⊥

R(x, y), ¬R(x, y)

⊥
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Rule application

Variables p and q can match with formulae (sort 1)
Variables x, y and z can match with terms of domain sort N + 1

Variable i can match with nominals (sort 0)
R and f are external constant symbols which match only with
themselves

Rule application of rule
E1, . . . ,Ek

X1 | · · · | Xn
:

If the premises of a rule respectively match with some formulae
F1, . . . ,Fk on a branch B, that is, there is a substitution θ s.t.
E1θ = F1, . . . ,Ekθ = Fk and θ is grounding wrt. B for X1, . . . ,Xn,
then
the rule is applicable to B

When the rule is applied, B is extended at the leaf with n nodes each
labelled with X1θ, . . . ,Xnθ respectively

θ is grounding wrt. B for X1, . . . ,Xn means the inferred formulae in
X1θ, . . . ,Xnθ are all ground (contain no variables)

Assumption: Any rule is applied only once to the same set of premises and
the same grounding substitution θ on each branch
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A sample tableau derivation for K

Example from before: ♦p ∧ �(p→ q) is K-satisfiable

Use the rules for S4(@) minus rules for @, reflexivity and transitivity

8. ¬R(a, f (¬p, a))
10. ⊥ 4, 8, cl

11. ν1(¬p, f (¬p, a))
13. ¬ν1(p, f (¬p, a)) 11,¬
14. ⊥ 10, 5, cl

12. ν1(q, f (¬p, a)) 9,∨

�����
XXXXXX

9. ν1(¬p ∨ q, f (¬p, a)) 3,�

((((((((((
XXXXXX

6. ¬R(a, a) 7.

�����
hhhhhhhhhhhh

1. ν1(¬�¬p ∧ �(¬p ∨ q), a) given
2. ν1(¬�¬p, a) 1,∧
3. ν1(�(¬p ∨ q), a) 1,∧
4. R(a, f (¬p, a)) 2,¬�
5. ν1(p, f (¬p, a)) 2,¬�
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Subexpression property

A rule has the subexpression property, if the L-expressions in each
inferred formula are subexpressions of some L-expression in the
premises

A tableau calculus has the subexpression property if each of its rules
has the subexpression property

Theorem 14

The calculus generated for S4(@) has the subexpression property

In general:

Theorem 15

If S is a well-defined semantic specification then TabS has the
subexpression property.
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Soundness of the generated calculi

Theorem 16 (Soundness)

If S is a normalised semantic specification, then
the generated calculus TabS is sound for the logic defined by S

In the simplest case, S is normalised, if:

S = disjoint union of the connective definitions S0 and the background
theory Sb

The only L-expressions occuring in Sb are atomic sort n expressions
(n ≥ 1)

Recall, it suffices to prove: Every rule X/X1 | . . . | Xn is sound, i.e.:

X is satisfiable =⇒ one of the Xi is satisfiable

This follows easily (why?)
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Completeness of the generated calculi

Theorem 17 (Refutational completeness)

If S is a well-defined semantic specification then
the generated calculus TabS is (constructively) complete.

In the simplest case, a semantic specification S is well-defined, if:

S is normalised

The ordering ≺ on L-formulae induced by S0 is well-founded

φ ≺ ψ iff φ occurs on the right and ψ on the left in a connective
definition equivalence
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Idea of the completeness proof

TabS(ν1(φ,a))

b ν1(φ,a)

B

I(B)

b

b

b

b

Show that from any fully expanded, open
branch B it is possible to ‘constructively ex-
tract’ a model I(B) of ν1(φ,a) that is an S-
model

Domain of I(B):

∆I(B) = set of ground terms occurring on B

Interpretation of atomic formulae with p

a constant:

νI(B)
n (p, t) = true ⇐⇒ νn(p, t) ∈ B

P
I(B)(p, t) = true ⇐⇒ P(p, t) ∈ B

Lift by induction over ≺ to arbitrary
FO(L)-formulae and show that I(B) is
an S-model of ν1(φ,a)

By the main theorem for L-open formulae there is a corresponding 86 / 439
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Soundness and completeness of the calculus generated for
S4(@)

Decomposition rules

ν1(⊥, x)

⊥

¬ν1(⊥, x)

¬⊥

ν1(¬p, x)

¬ν1(p, x)

¬ν1(¬p, x)

ν1(p, x)

ν1(p ∨ q, x)

ν1(p, x) | ν1(q, x)

¬ν1(p ∨ q, x)

¬ν1(p, x), ¬ν1(q, x)

ν1(�p, x)

¬R(x, y) | ν1(p, y)

¬ν1(�p, x)

R(x, f (p, x)), ν1(p, f (p, x))

ν1(@ip, x)

ν1(p, ν0(i))

¬ν1(@ip, x)

¬ν1(p, ν0(i))

Theory rules
R(x, x) ¬R(x, y) | ¬R(y, z) | R(x, z)

Closure rules
ν1(p, x), ¬ν1(p, x)

⊥

R(x, y), ¬R(x, y)

⊥

Corollary

The calculus (with or without the default equality rules) is sound and
(constructively) complete for S4(@)
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Refining tableau rules

3 Day 3: Tableau calculus synthesis & rule refinement
From semantic specification to tableau calculus
Soundness and completeness of the generated calculi
Refining tableau rules
Decreasing branching by moving conclusions to premises
Standard proofs of completeness and conditions for rule refinements
Expressing domain sort in the language of logic

Generally the degree of branching of the generated rules is higher
than is necessary. Furthermore, representation of the generated rules
involves the additional symbols of the language FO(L) creating a
syntactic overhead which may not always be justified. To address these
problems we introduce two techniques for refining the generated rules.
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Two Refinements

Decreasing branching by moving rule conclusions to premises.

Using logic expressiveness to eliminate symbols of domain sort.
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Decreasing Branching Factor by Moving Conclusions to Premises

Let given tableau calculus Tab contains the rule:

r =
X0

X1 | · · · | Xm

.

Let X1 = {ψ1, . . . , ψk}. Define:

rj
def
=

X0 ∪ {∼ψj}

X2 | · · · | Xm

(j = 1, . . . , k).

where

∼φ
def
=

(

ψ, φ = ¬ψ,

¬φ, otherwise.

Refined tableau calculus:

Tab′ def
= (Tab \ {r}) ∪ {r1, . . . , rk}.
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Soundness and Constructive Completeness of Refined Tableau
Calculus

rj are derivable from r.

If r is sound then rj are sound.

In general, r is not derivable in Tab′.

Sufficient condition for admissibility of r in Tab′:

For every open branch B in a Tab′-tableau, if E1, . . . ,El are reflected in
I(B) then

(†) X0(E, t) ⊆ B implies I(B) |= Xi(E, t) for some i = 1, . . . ,m.

Theorem 18 (Refinement)

1 Tab′ is sound whenever Tab is sound.

2 If Tab is constructively complete and the condition (†) holds for any
open branch B in any Tab′-tableau then Tab′ is constructively
complete.
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Simple Example: Transitivity Rule

The transitivity rule

¬R(x, y) | ¬R(y, z) | R(x, z)

can be converted into the rule

R(x, y), R(y, z)

R(x, z)
.

The condition (†) takes the following form.

If terms t0, t1, t2 occur in B

then one of ¬R(t0, t1),¬R(t1, t2),R(t0, t2)

is true in I(B).

If R(t0, t1) is not in B then I(B) |= ¬R(t0, t1) by reflection of atomic
expressions.

Similarly if R(t1, t2) is not in B.

If both R(t0, t1) and R(t1, t2) are in B then, by the refined rule,
R(t0, t2) is in B and, hence, I(B) |= R(t0, t2).
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Negative Example

In absence of other rules which can be applied to disjunctive
formulae, the standard rule for disjunction

ν1(p ∨ q, x)

ν1(p, x) | ν1(q, x)

cannot be replaced by the rule

ν1(p ∨ q, x), ¬ν1(p, x)

ν1(q, x)

Given a formula ν1(p ∨ q,a), the branch B containing only
ν1(p ∨ q,a) is fully expanded.

The model I(B) reflects the expressions p and q.

ν1(p ∨ q,a) ∈ B

However I(B) 6|= ν1(p,a) and I(B) 6|= ν1(q,a).

The condition (†) fails for B and p and q!
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A Stronger Refinement Condition

Suppose Tab has subexpression property.

Then the condition (†) is (inductively) implied by the following
condition:

if X0(E, t) ⊆ B and I(B) 6|= X1(E, t)

then Xi(E, t) ⊆ B, for some i = 2, . . . ,m.
(‡)
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Example: �-Rule

The rule
ν1(�p, x)

¬R(x, y) | ν1(p, y)

can be replaced with the rule:

ν1(�p, x), R(x, y)

ν1(p, y)
.

The condition (‡) takes the following form.

If ν1(�φ, t) ∈ B and I(B) |= R(t, t′) then ν1(φ, t
′) ∈ B.
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Standard Proof of Completeness with Rule Refinements

Standard Completeness Theorem for S4(@) proved by induction on
the ordering ≺:

Lemma 19

1 If @iφ is in B then I(B), i |= φ for any formula φ.
2 For every formula φ, if (i, j) ∈ RI(B) and @i�φ ∈ B then @jφ appears in B.

Compare with the condition (‡) for �-rule:

If ν1(�φ, t) ∈ B and I(B) |= R(t, t′) then ν1(φ, t
′) ∈ B.

Standard proof of completeness includes
proof of admissibility of “refined” rules.
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Example: Refining Tableau Calculus for S4(@)
Decomposition rules

ν1(¬p, x)

¬ν1(p, x)

¬ν1(¬p, x)

ν1(p, x)

ν1(p ∨ q, x)

ν1(p, x) | ν1(q, x)

¬ν1(p ∨ q, x)

¬ν1(p, x), ¬ν1(q, x)

ν1(�p, x)

¬R(x, y) | ν1(p, y)
 

ν1(�p, x), R(x, y)

ν1(p, y)

¬ν1(�p, x)

R(x, f (p, x)), ¬ν1(p, f (p, x))

ν1(@ip, x)

ν1(p, ν0(i))

¬ν1(@ip, x)

¬ν1(p, ν0(i))

Theory rules

R(x, x) ¬R(x, y) | ¬R(y, z) | R(x, z)
 

R(x, y), R(y, z)

R(x, z)

Closure rules

ν1(p, x), ¬ν1(p, x)

⊥

ν1(⊥, x)

⊥

+ refined tableau rules for the equality axioms 97 / 439
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Summary

The refinement reduces the branching factor of the calculus.

Thus, it increases performance of tableau algorithms based on the
tableau calculus.

The refinement is implicit in the standard tableau approach.

The standard completeness proof verifies the admissibility of implicit
refinements.

The refinement works only with respect to the whole calculus!
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Encoding Domain Sort

Let L be a logic.

Suppose there are expressions A+
n (p, i1, . . . , in), A−

n (p, i1, . . . , in),
B+

P (i1, . . . , in), B−
P (i1, . . . , in) of the primary sort of L such that

∀SL |= ∀x
`

ν1(A
+
n , x)→ νn(p, ν0(i1), . . . , ν0(in))

´

∀SL |= ∀x
`

ν1(A
−
n , x)→ ¬νn(p, ν0(i1), . . . , ν0(in))

´

∀SL |= ∀x
`

ν1(B
+
P , x)→ P(ν0(i1), . . . , ν0(in))

´

∀SL |= ∀x
`

ν1(B
−

P , x)→ ¬P(ν0(i1), . . . , ν0(in))
´

In particular:

∀SL |= ∀x
`

ν1(B
+
≈, x)→ ν0(i1) ≈ ν0(i2)

´

,

∀SL |= ∀x
`

ν1(B
−
≈, x)→ ν0(i1) 6≈ ν0(i2)

´

.

It is possible to eliminate symbols and predicates of the domain sort.
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Domain Symbol Elimination

The tableau calculus Tab′′ obtained from Tab:

Let i1, . . . , in be fresh variables of the sort 0.

Replace occurrences νn(E, x) for A+
n (E, i).

Replace occurrences ¬νn(E, x) for A−
n (E, i).

Replace occurrences P(x) for B+
P
(i).

Replace occurrences ¬P(x) for B−
P (i).

Theorem 20

Let Tab be a sound and complete tableau calculus for a logic L. Then
Tab′′ is sound and complete.
If, in addition, Tab is constructively complete then Tab′′ is also
constructively complete for L.
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Dealing with (Skolem) Functions

There may not be function symbols in the object language L which
correspond to (Skolem) functions.

Introducing new connectives f ′ into L for every function f (including
constants) of FO(L) so that for any p1, . . . ,pm, i1, . . . , in, the
expression f ′(p, i1, . . . , in) is of sort 0 and its semantics is defined by

ν0(f
′(p, i1, . . . , in))

def
= f (p, ν0(i1), . . . , ν0(in)).
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Example: Extending Language of S4(@)

Extend the language of S4(@) to S4(@, {·}) (full hybrid S4):

{·} — “singleton” connective of sort 0 7→ 1;

Semantical definition:

∀x (ν1({i}, x) ≡ ν0(i) ≈ x).

Introduce a connective f ′ of the sort (1,0) 7→ 0 which correspond to
the Skolem function f :

ν0(f
′(p, i))

def
= f (p, ν0(i)).

Expressions which defines the predicates R, ≈ and ν1:

A
+
1 (p, i)

def
= @ip, A

−
1 (p, i)

def
= @i¬p,

B
+
R (i, j)

def
= @i♦{j}, B

−
R (i, j)

def
= @i¬♦{j},

B
+
≈(i, j)

def
= @i{j}, B

−
≈(i, j)

def
= @i¬{j}.
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Example: Refined Tableau Rules for S4(@, {·})

Decomposition rules

ν1(¬p, x)

¬ν1(p, x)
 

�
��

@i¬p

@i¬p

¬ν1(¬p, x)

ν1(p, x)
 

@i¬¬p

@ip

ν1(p ∨ q, x)

ν1(p, x) | ν1(q, x)
 

@i(p ∨ q)

@ip | @iq

¬ν1(p ∨ q, x)

¬ν1(p, x), ¬ν1(q, x)
 

@i¬(p ∨ q)

@i¬p, @i¬q

ν1(�p, x), R(x, y)

ν1(p, y)
 

@i�p, @i♦{j}

@jp

¬ν1(�p, x)

R(x, f (p, x)), ¬ν1(p, f (p, x))
 

@i¬�p

@i♦{f ′(p, i)}, @f ′(p,i)¬p

ν1(@ip, x)

ν1(p, ν0(i))
 

@i@jp

@jp

¬ν1(@ip, x)

¬ν1(p, ν0(i))
 

@i¬@jp

@j¬p

ν1({i}, x)

ν0(i) ≈ x
 

�
��

@i{j}

@i{j}

¬ν1({i}, x)

ν0(i) 6≈ x
 

�
�
��@i¬{j}

@i¬{j}

Theory rules

R(x, x)
 

@i♦{i}

R(x, y), R(y, z)

R(x, z)
 

@i♦{j}, @j♦{k}

@i♦{k}

+closure rules
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Equality Congruence Rules for S4(@, {·})

@i{j}

@j{i}

@i¬{j}

@j{j}

@ip

@i{i}

@i¬♦{j}

@j{j}

@ip, @i{j}

@jp

@i♦{j}, @j{k}

@i♦{k}

@i{j}

@f ′(p,i){f ′(p, j)}

104 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

From semantic specification
to tableau calculus

Soundness and
completeness of the
generated calculi

Refining tableau rules

Decreasing branching by
moving conclusions to
premises

Standard proofs of
completeness and conditions
for rule refinements

Expressing domain sort in
the language of logic

Day 4: Blocking
mechanisms and the
finite model property

Day 5: More examples
& METTEL

Appendix

Summary

Two rule refinements were introduced.

The first refinement allows to reduce branching factor of a tableau
calculus and increase performance of tableau algorithms based on
the calculus.

It can be applied iteratively.

The second refinement reduce an overhead of using symbols of the
domain sort by expressing the domain sort within the language of the
logic.

Both refinement preserve soundness, (constructive) completeness
and the subexpression property.
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Outline

4 Day 4: Blocking mechanisms and the finite model property
Ensuring termination using standard loop-checking mechanisms
The unrestricted blocking mechanism
Proving termination based on the finite model property
Turning ground semantic tableau calculi into deterministic procedures

We consider several known loop-checking and blocking mechanisms
for detecting repetitions in tableau derivations and achieving termination.
We demonstrate a problem of these mechanisms for detecting repetitions
in expressive description logics. We introduce an unrestricted blocking
mechanism and prove that it is general enough to ensure termination for
logics with the finite model property. We also show how to simulate known
loop-checking mechanisms by restricting the unrestricted blocking
mechanism.
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Motivating Example

Satisfiability of the formula �¬�p for S4(@).

a �¬�pRR ¬�p, �¬�p

bb = f (p,a)

R

¬pbb = f (p,a)

R

¬p, ¬�p

cc = f (p, b) = f (p, f (p,a))

R

¬pcc = f (p, b) = f (p, f (p,a))

R

RR

¬p, ¬�p

. . .

It is required to detect repetitions in partially constructed models!
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Terminating Tableau Calculus

A tableau calculus is (weakly) terminating iff

any fully expanded tableau for any satisfiable set of expressions has
a finite branch.

In order to ensure termination various blocking mechanisms are
required.
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Blocking

Blocking/loop-checking is a mechanism for preventing expansion of
nodes which can cause a repetitive derivation.

Standard loop-checking mechanisms combine the following
techniques:

Subset and equality blocking.

Ancestor and anywhere blocking.

Static and dynamic blocking.

Many other techniques:

Pairwise blocking.

Pattern-base blocking.

Blocking via reuse of terms.

Unrestricted blocking mechanism.
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Most Common Blocking Techniques

For every pair of nominals (or labels) i, j verify blocking conditions.

If blocking conditions are true for i and j, block one of i, j for
application of rules which can generate a new nominal term.

Unblock a nominal if blocking conditions become false.

If blocks on individuals are never undone then blocking is called
static. Otherwise it is called dynamic.

If blocking conditions includes the condition that j is ancestor of i,
then the blocking is called ancestor blocking. Otherwise it is called
anywhere blocking.

In hybrid logic, blocking mechanisms require access to a set of
expressions τ (i) associated with given nominal i:

τ (i)
def
= {φ | @iφ is in B}

In the language of the framework (for a domain term t):

τ (t)
def
= {φ | ν1(φ, t) is in B}
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Example: Subset Blocking

Blocking condition: τ (x) ⊆ τ (y).

Example: �¬�p for S4(@).

a �¬�pRR ¬�p, �¬�p

bb = f (p,a)

R

¬pbb = f (p,a)

R

¬p, ¬�p

cc = f (p, b) = f (p, f (p,a))

R

¬pcc = f (p, b) = f (p, f (p,a))

R

RR

¬p, ¬�p

τ (c) ⊆ τ (b)
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Example: Reusing Terms

Use a special form of the ¬�-rule:

ν1(¬�p, x)

R(x, t1), ν1(¬p, t1) | · · · | R(x, tn), ν1(¬p, tn) | R(x, f (p, x)), ν1(¬p, f (p, x))

t1, . . . , tn are all domain terms in the branch.

Example: �¬�p for S4(@).

a �¬�pRR ¬�p, �¬�p¬p, ¬�p, �¬�paR
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Why Standard Blocking Mechanisms Are Not Sufficient?

Choice of blocking mechanisms heavily depend on a concrete logic
and a tableau calculus.

Soundness and completeness of a calculus need to be reproved
when adding a blocking mechanism.

Standard blocking mechanisms are not sufficient for the Boolean
Modal Logic and description logics with full role negation.

We need a more general blocking mechanism which can guarantee
termination and does not destroy soundness and completeness of
calculi.

113 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Ensuring termination using
standard loop-checking
mechanisms

The unrestricted blocking
mechanism

Proving termination based on
the finite model property

Turning ground semantic
tableau calculi into
deterministic procedures

Day 5: More examples
& METTEL

Appendix

Unrestricted Blocking Mechanism: Intuition

Suppose given formula is satisfiable in a finite model.

Since tableau derivation constructs provisional model for the formula,
attempt to make the model as smaller as possible.

In a case if model cannot be made smaller (i.e. that leads to a
contradiction) backtrack.

114 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Ensuring termination using
standard loop-checking
mechanisms

The unrestricted blocking
mechanism

Proving termination based on
the finite model property

Turning ground semantic
tableau calculi into
deterministic procedures

Day 5: More examples
& METTEL

Appendix

Unrestricted Blocking Mechanism

Unrestricted Blocking Rule:

(ub):
x ≈ y | x 6≈ y

Strategy restrictions:

1 If t ≈ t′ appears in a branch and t < t′1 then all further applications
of rules which introduce new terms to expressions containing t′ are
not performed within the branch.

2 In every open branch there is some node from which point onwards
before any application of a rule introducing a new term all possible
applications of the (ub) rule have been performed.

1
< reflects the order in which new terms are introduced
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Example: Unrestricted Blocking

Example: �¬�p for S4(@).

a �¬�pRR ¬�p, �¬�p¬p, ¬�p, �¬�p

bb = f (p,a)

R

¬pbb = f (p,a)

R

¬p

a ≈ b
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Soundness and Completeness

The unrestricted blocking rule is sound.

Thus, it can be safely added to any complete calculus without
destroying the completeness.

Adding the unrestricted blocking rule preserves constructive
completeness of the calculus.

Theorem 21

If Tab is sound and (constructively) complete tableau calculus for a logic L

then Tab + (ub) is sound and (constructively) complete tableau calculus
for L.

117 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Ensuring termination using
standard loop-checking
mechanisms

The unrestricted blocking
mechanism

Proving termination based on
the finite model property

Turning ground semantic
tableau calculi into
deterministic procedures

Day 5: More examples
& METTEL

Appendix

Simulating Existing Blocking Mechanisms

The unrestricted blocking mechanism can simulate the blocking via
reusing terms.

The converse is not true!

It can simulate subset and equality blocking, and other blocking
mechanisms:

Add conditions for blocking as constraints on application of the
unrestricted blocking rule, e.g.

τ(x) ⊆ τ(y)

x ≈ y | x 6≈ y

Use the rule application strategy which is needed for the simulated
blocking mechanism. (E.g. apply all ‘local’ rules before the others).

Work in progress.
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Subexpression Operator

sub an operator which maps sets of expressions to sets of
expressions.

A tableau calculus Tab is compatible with sub, iff for every set of
expressions N, all L-expressions occurring in a fully expanded
tableau derivation Tab(N) belong to sub(N).

sub is finite if sub(N) is finite for every finite N.
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Ensuring Compatibility with sub

If S is finite then the induced ordering ≺ is finitely branching.

If S is well-defined then ≺ is well-founded.

Thus, if S is finite and well-defined then sub� is finite.

Every rule respects the ordering ≺.

Thus, TabS is compatible with sub�.

Theorem 22

Suppose ≺ is induced by a finite and well-defined semantic specification
S. Then,
TabS is compatible with sub� and sub� is finite.

Corollary

The calculus generated for S4(@) is compatible with sub� and sub� is
finite.
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Termination Criterion

Lemma 23 (Small Branch Lemma)

Let Tab be a sound and constructively complete calculus for a logic L which
includes the unrestricted blocking rule.
Let Tab(N) be a tableau for an input set N which is satisfiable in a model I.
Then there is a branch B in Tab(N) such that |∆I(B)| ≤ |∆I|.

Theorem 24 (Finite Open Branch Theorem)

If a set of formulae N is satisfiable in a finite model and Tab is compatible with a
finite closure operator sub then there is a finite open branch in Tab(N).

Theorem 25 (Termination)

Let Tab be a sound and constructively complete tableau calculus for a logic L
which is compatible with a finite closure operator sub for L-expressions. Then
Tab + (ub) is terminating if and only if L has the finite model property.

Corollary

Let TabS4(@) be a generated calculus for S4(@). Then TabS4(@) + (ub) is sound,
(constructively) complete and terminating tableau calculus for S4(@).
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Summary

A necessity of using blocking is discussed.

Several blocking techniques are demonstrated.

A new generic blocking mechanism is introduced.

It ensures termination of a calculus provided that the calculus is
sound and constructively complete for a logic which has a finite
model property.

It can simulate other blocking mechanisms such that subset and
equality blocking, term-reusing blocking, etc.

122 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Ensuring termination using
standard loop-checking
mechanisms

The unrestricted blocking
mechanism

Proving termination based on
the finite model property

Turning ground semantic
tableau calculi into
deterministic procedures

Day 5: More examples
& METTEL

Appendix

Non-determinism present in tableau calculi

The application of tableau rules is non-deterministic

At any point in the derivation process we have complete flexibility in
choosing:

which branch to select and expand next

which rule to apply next

which formula to select

=⇒ Tableau calculi provide non-deterministic procedures

Terminating tableau calculi provide non-deterministic decision procedures

Problem

How to turn the generated tableau calculi into deterministic procedures?
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Turning tableau calculi into deterministic procedures

Ensuring completeness:

If N is unsatisfiable, then any tableau Tab(N) constructed
non-deterministically for it is closed

Problem: Does this imply that every deterministic procedure starting
from N constructs a closed tableau?
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Problem associated with rules of universal extent

Rules with universal extent (i.e., γ-rules) can cause problems,
regardless as to whether we use the unrefined or refined versions

Unrefined �-rule:

ν1(�p, x)

¬R(x, y) | ν1(p, y)

Applicable to the same formula ν1(�φ, t) on a branch for each
domain term t occuring on that branch
(Recall, the substitution used in a rule appication must be grounding)

Refined �-rule:

ν1(�p, x), R(x, y)

ν1(p, y)

Applicable to the same formula ν1(�φ, t) on a branch for each
R(t, t′) occuring on that branch
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Problem associated with rules of universal extent (cont’d)

Example: { �♦p, �¬p } is S4-unsatisfiable

1. a : �¬�¬p given
2. a : �¬p given
3. (a, a) : R reflexivitity
4. a : ¬�¬p 1, 3,�
5. (a, f (¬p, a)) : R 4,¬�
6. f (¬p, a) : p 4,¬�
7. (a, f (¬p, a)) : R 3, 5, transitivity
8. f (¬p, a) : ¬�¬p 1, 5,�
9. (f (¬p, a), f (¬p, f (¬p, a))) : R 8,¬�

10. f (¬p, f (¬p, a)) : p 8,¬�
11. (a, f (¬p, f (¬p, a))) : R 5, 9, transitivity
12. f (¬p, f (¬p, a)) : ¬�¬p 1, 11,�

... ad infinitum

This is an unfair derivation; formula 2. is indefinitely ignored

fa f fa ffa ffa

�¬�¬p
�¬p

¬�¬p p,¬�¬p p,¬�¬p
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Fairness

We need a notion of fairness:

A tableau procedure is fair if:
When a rule is applicable to a formula then the rule is eventually
applied to this formula on every branch on which it occurs
(unless the branch is closed and an open, fully expanded branch has
already been found)

Theorem 26

If Tab is refutationally complete then every fair (deterministic) tableau
procedure based on Tab is refutationally complete.

Possible way of guaranteeing fairness:
Giving γ-rules and γ-formulae equal priority ensures completeness
=⇒ store in a queue data-structures
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Turning tableau calculi into deterministic procedures (cont’d)

Ensuring strong termination:

If N is a finite, satisfiable set, then any tableau Tab(N) constructed
non-deterministically for it is finite

Problem: Does this imply that every deterministic procedure starting
from N constructs a finite open tableau?

Yes, for every fair derivation

Ensuring weak termination:

If N is a finite, satisfiable set, then any Tab(N) constructed
non-deterministically for it has a finite open, fully expanded branch

Problem: Does this imply that every deterministic procedure starting
from N constructs a finite open, fully expanded branch?
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Problem associated with unrestricted blocking

x ≈ y | x 6≈ y

Always choosing the right branch at (ub) branching points is like not
using blocking at all

Example: { �♦p } is S4-satisfiable

1. a : �¬�¬p given
2. (a,a) : R reflexivitity
3. a : ¬�¬p 1, 2,�
4. (a, f (¬p,a)) : R 3,¬�
5. f (¬p,a) : p 3,¬�
6. (a, f (¬p,a)) : R 2, 4, transitivity
7. f (¬p,a) : ¬�¬p 1, 4,�
8. (f (¬p,a), f (¬p, f (¬p,a))) : R 7,¬�
9. f (¬p, f (¬p,a)) : p 7,¬�

10. (a, f (¬p, f (¬p,a))) : R 4, 8, transitivity
11. f (¬p, f (¬p,a)) : ¬�¬p 1, 10,�

... ad infinitum
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Problem associated with unrestricted blocking (cont’d)

7a. f(¬p, a) ≈ a

4′. (a, a) : R 4, 7a

5′. a : p 5, 7a

6′. (a, a) : R 6, 7a

7′. a : ¬�¬p 7, 7a

fully exp., open

11a. f(¬p, f(¬p, a))) ≈ a

.

.

.

12. f(¬p, f(¬p, a))) ≈ f(¬p, a)

.

.

.

13. f(¬p, f(¬p, a))) 6≈ f(

.

.

. ad infinitum

������

PPPPPP

11b. f(¬p, f(¬p, a))) 6≈ a

          
HHHH

7b. f(¬p, a) 6≈ a (ub)
8. (f(¬p, a), f(¬p, f(¬p, a))) : R 7, ¬�

9. f(¬p, f(¬p, a)) : p 7, ¬�

10. (a, f(¬p, f(¬p, a))) : R 4, 8, transitivity
11. f(¬p, f(¬p, a)) : ¬�¬p 1, 10, �

(((((((((((((
Q
Q
Q

1. a : �¬�¬p given
2. (a, a) : R 1, ¬�

3. a : ¬�¬p 1, 2, �

4. (a, f(¬p, a)) : R 3, ¬�

5. f(¬p, a) : p 3, ¬�

6. (a, f(¬p, a)) : R 2, 4, transitivity
7. f(¬p, a) : ¬�¬p 1, 4, �

Constructed by using depth-first right-to-left search strategy

Always selecting the right-most branch is unfair; the right-most
branch is infinite
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Problem where we only have weak termination

There is an example (due to Hilverd Reker) for a decidable logic with
the finite model property for which always choosing left-most
branches causes non-termination

This means we have to treat branches fairly
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Possible ways of getting decision procedures

For calculi for which strong termination can be shown:
Any fair tableau procedure provides a decision procedure, including
one based on depth-first search and a left-to-right branch selection
strategy

For calculi for which only weak termination can be shown:
Any fair tableau procedure based on breadth-first search strategy
provides a decision procedure
Alternatively use a depth-first iterative deeping or depth-first up to
maximal depth search strategy

1

2

3

4

5

6

7 8

DFLR

1

2

4

8

5

3

6 7

BF

1

2

3

8

4

5

6 7

DFID n = 2
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The Framework: How it all works

1 Formalise the semantics of the logic

2 Verify the well-definedness conditions

3 Use the method to automatically generate a tableau calculus

Results ensure the calculus is sound and constructively complete

4 Refine and optimise the generated tableau calculus

5 Prove the finite model property and compatability with a finite closure
operator sub for the logic, then add the unrestricted blocking
mechanism to the calculus

Results ensure the calculus is terminating
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Applications of the framework

Concrete case studies

Intuitionistic propositional logic [TABLEAUX09, LMCS11]

Description logic SO [LMCS11]

Modal logic S4(u,+) [ENTCS10] today
Hybrid logic S4(@) this week
Hybrid logic S4(@, {·}) yesterday
K(m)(¬) today
Other description logics ongoing
Functional semantics of extensions of modal logic K ongoing

Designed to cover

Description logics ALBO, ALBOid

Dynamic modal logics, Peirce logic
Relational logics
. . .
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The modal logic of some, all and only

K(m)(¬) = the modal logic of ‘some’, ‘all’ and ‘only’

Modal formulae: φ, ψ −→ p | ⊥ | ¬φ | φ ∨ ψ | [α]φ
Actions: α −→ r | ¬α

Semantics: Kripke modelM = (W,R, v)
valuation mapping
R : actions −→ 2W×W

M, x |= p iff x ∈ v(p)

M, x 6|= ⊥

M, x |= ¬φ iff M, x 6|= φ

M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ

M, x |= [α]φ iff for all Rα-successors y of x M, y |= φ

(x, y) ∈ R¬α iff (x, y) 6∈ Rα

Notation: Rα instead of R(α)
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Why is K(m)(¬) interesting?

Not widely studied; no tableau calculi known

In K(m)(¬) there are 3 quantifier operators:

Necessity operator: M, x |= [α]φ iff ∀y
`

Rα(x, y)→M, y |= φ
´

Possibility operator: M, x |= 〈α〉φ iff ∃y
`

Rα(x, y) ∧M, y |= φ
´

Sufficiency operator: M, x |= ¬〈¬α〉φ iff ∀y
`

M, y |= φ→ Rα(x, y)
´

¬〈¬α〉 is a dual of 〈α〉, like [α] is a dual of 〈α〉; recall [α] ≡ ¬〈α〉¬

Notation Reading
[α]φ after performing α, φ is necessarily true
〈α〉φ after performing α, φ is possibly true
¬〈¬α〉φ φ is true is a sufficient condition for α to be performable
[α]φ φ is true at all α-successors
〈α〉φ φ is true at some α-successor
¬〈¬α〉φ φ is true at only α-successors

K(m)(¬) has the finite model property but does not have the tree
model property

K(m)(¬) is can be decided by translation to first-order logic and
resolution
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Applying the framework to K(m)(¬)

Object language for L = K(m)(¬)

Expressions:

modal formulae φ, ψ −→ p | ⊥ | ¬φ | φ ∨ ψ | [α]φ
actions α −→ r | ¬α

Sorts: 0 none
1 for modal formulae
2 for actions

Semantic specification language FO(L)

Sorts: 1, 2 plus 3 for the domain sort

Sorts 1 and 2 defined as above

Sort 3: t, t′ −→ a | x | f (α, φ, t)

Designated symbols: ν1(φ : 1, t : 3)
ν2(α : 2, t : 3, t : 3)
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Semantic specification of K(m)(¬)

S0: Connective definitions

∀x (ν1(⊥, x) ≡ ⊥)

∀x (ν1(¬p, x) ≡ ¬ν1(p, x))

∀x (ν1(p ∨ q), x) ≡ ν1(p, x) ∨ ν1(q, x))

∀x (ν1([r]p, x) ≡ ∀y (ν2(r, x, y)→ ν1(p, y)))

∀x∀y (ν2(¬r, x, y) ≡ ¬ν2(r, x, y))

Sb = ∅
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Generated rules for K(m)(¬)

Decomposition rules:

ν1(¬p, x)

¬ν1(p, x)

¬ν1(¬p, x)

ν1(p, x)

ν1(p ∨ q), x)

ν1(p, x) | ν1(q, x)

¬ν1(p ∨ q), x)

¬ν1(p, x), ¬ν1(q, x)

ν1([r]p, x)

¬ν2(r, x, y) | ν1(p, y)

¬ν1([r]p, x)

ν2(r, x, f (r, p, x)), ¬ν1(p, f (r, p, x))

ν2(¬r, x, y)

¬ν2(r, x, y)

¬ν2(¬r, x, y)

ν2(r, x, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)

⊥

ν2(r, x, y), ¬ν2(r, x, y)

⊥
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Terminating calculus for K(m)(¬)

The specification is normalised and well-defined

Theorem 27

TabK(m)(¬) is sound and complete

Adding the default equality rules plus unrestricted blocking gives a
terminating calculus for K(m)(¬)

Theorem 28

Any fair tableau procedure based on TabK(m)(¬) + (eq) + (ub) using
either a BF, DFID or DFMD search strategy is a decision procedure
for K(m)(¬)
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Problem of refining the rules

The language of K(m)(¬) is not expressive enough to generate rules
operating on labelled formulae, but adding the @ and {·} operators
will allow us to eliminate the ν-predicates

Question: Can the [·] rule be replaced by the refined non-branching
version?

ν1([r]p, x)

¬ν2(r, x, y) | ν1(p, y)
 

ν1([r]p, x), ν2(r, x, y)

ν1(p, y)
?

No, conditions (†) and (‡) don’t hold

Nevertheless there is a way to use the framework to refine the
tableau calculus to use a non-branching [·] rule
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An alternative semantic specification of K(m)(¬)

S0: Original connective definitions

∀x (ν1(⊥, x) ≡ ⊥)

∀x (ν1(¬p, x) ≡ ¬ν1(p, x))

∀x (ν1(p ∨ q), x) ≡ ν1(p, x) ∨ ν1(q, x))

∀x (ν1([r]p, x) ≡ ∀y (ν2(r, x, y)→ ν1(p, y)))

∀x∀y (ν2(¬r, x, y) ≡ ¬ν2(r, x, y))

Alternative specification S:

∀x (ν1(⊥, x) ≡ ⊥)

∀x (ν1(¬p, x) ≡ ¬ν1(p, x))

∀x (ν1(p ∨ q), x) ≡ ν1(p, x) ∨ ν1(q, x))

∀x (ν1([r]p, x) ≡ ∀y (ν2(r, x, y)→ ν1(p, y)))

∀x∀y (ν2(¬r, x, y) ≡ ¬ν2(r, x, y))

∀x (ν1([¬r]p, x)→ ∀y (¬ν2(r, x, y)→ ν1(p, y)))
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Is S well-defined?

∀S0, ∀Sb |= ∀S Yes

≺ induced by S is well-founded Yes

∀S0,Sb↾sub≺(E) |= ∀x
““

V

ΦE
+ → φσ(E1, . . . ,Em, x)

”

∧
“

φσ(E1, . . . ,Em, x)→
W

ΦE
−

””

Yes

S must define the semantics of the connectives, i.e. ∀S |= ∀S0 Yes
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Rules generated from alternative specification S

Decomposition rules:

ν1(¬p, x)

¬ν1(p, x)

¬ν1(¬p, x)

ν1(p, x)

ν1(p ∨ q), x)

ν1(p, x) | ν1(q, x)

¬ν1(p ∨ q), x)

¬ν1(p, x), ¬ν1(q, x)

ν1([r]p, x)

¬ν2(r, x, y) | ν1(p, y)

¬ν1([r]p, x)

ν2(r, x, f (r,p, x)), ¬ν1(p, f (r, p, x))

ν2(¬r, x, y)

¬ν2(r, y, x)

¬ν2(¬r, x, y)

ν2(r, y, x)

ν1([¬r]p, x)

ν2(r, x, y) | ν1(p, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)

⊥

ν2(r, x, y), ¬ν2(r, x, y)

⊥

Now, the condition (†) holds.
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Refined alternative calculus

Decomposition rules:

ν1(¬p, x)

¬ν1(p, x)

¬ν1(¬p, x)

ν1(p, x)

ν1(p ∨ q), x)

ν1(p, x) | ν1(q, x)

¬ν1(p ∨ q), x)

¬ν1(p, x), ¬ν1(q, x)

ν1([r]p, x), ν2(r, x, y)

ν1(p, y)

¬ν1([r]p, x)

ν2(r, x, f (r, p, x)), ¬ν1(p, f (r, p, x))

ν2(¬r, x, y)

¬ν2(r, y, x)

¬ν2(¬r, x, y)

ν2(r, y, x)

ν1([¬r]p, x)

ν2(r, x, y) | ν1(p, y)

Closure rules:

ν1(p, x), ¬ν1(p, x)

⊥

ν2(r, x, y), ¬ν2(r, x, y)

⊥

Theorem 29

TabS is sound and complete for K(m)(¬)

TabS + (eq) + (ub) is a sound, complete and terminating calculus for K(m)(¬)
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Motivation

A new logic.

No tableau calculus known.

Non-trivial semantics which does not immediately fit into the
framework.

A good test case for the framework.
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Admissible Rules

α/β is derivable in L iff α ⊢L β.

A rule is admissible for a logic if the set of theorems of the logic is
closed under the rule. (Lorenzen 1955)

α/β is admissible for L if for every substitution σ,
σ(α) ∈ L =⇒ σ(β) ∈ L.

Derivable⇒ admissible.

Admissible ; derivable. (Harrop 1960, Mints 1976)

Algorithm for checking rule admissibility for S4 (Rybakov 1984)
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Original Algorithm

Reduce given rule to a normal form.

Disprove the rule α/β in a special S4-modelM = (W,R, ν) with the
co-cover property.

Co-cover property (n = 0,2, . . .):

∀x1 · · · ∀xn∃x
ˆ

R(x, x1) ∧ · · · ∧ R(x, xn)∧

∀y
`

R(x, y)→ (x ≈ y ∨ R(x1, y) ∨ · · · ∨ R(xn, y)
´˜

x1 x2 · · · xn

x

yy

Show thatM, x0 6|= β for some x0 ∈ W andM, x |= α for all x ∈ W.

2ExpTime-algorithm!
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Sequence of Steps

Reduce the rule admissibility problem in S4 to a satisfiability problem
in some special logic S4u,+.

Prove that S4u,+ has the finite model property.

Prove that S4u,+ has a well-defined semantic specification.

Apply the framework: generate and refine a tableau calculus for
S4u,+.

Add the unrestricted blocking mechanism to ensure termination of
the calculus.

Combine the reduction and the tableau algorithm.
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Semantic Characterisation: Direct Attempt

S4u is the extension of S4 with the universal modality [u]:

M, x |= [u]φ iffM, y |= φ for all y.

Theorem 30

α/β is derivable in S4 iff [u]α ∧ ¬β is unsatisfiable in S4u.

Theorem 31

α/β is admissible for S4 iff [u]α ∧ ¬β is unsatisfiable in the extension of
S4u which is characterized by the models with co-cover property.

Problem: the filtration argument for the finite model property fails!
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Semantic Characterisation I

Formula Definable Co-Cover Property :

∃x∀p (M, x |= ♦p→M, x |= p)(FCCP)

∀x1 · · · ∀xn∃x∀p
`

R(x, x1) ∧ · · · ∧ R(x, xn)∧

M, x |= ♦p→ (M, x |= p ∨M, x1 |= ♦p ∨ · · · ∨M, xn |= ♦p)
´

.

x1 x2 · · · xn

x ♦p♦p

♦p

S4u,+ is characterised by the class S4u-models with (FCCP).
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Semantic Characterisation II

Theorem 32 (The Effective Finite Model Property)

Let φ be a formula and n the length of φ. If φ is satisfiable in an
S4u,+-model then it is satisfiable in a finite S4u,+-model and its size does
not exceed 2n.

Theorem 33

α/β is admissible for S4 iff [u]α ∧ ¬β is unsatisfiable in S4u,+.
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Semantic Specification of S4u

S0 = equivalences defining connectives.

universal modality: ∀x (ν1([u]p, x)↔ ∀y ν1(p, y)).

Sb = background theory: all logical terms are atomic ⊇ frame
conditions.

reflexivity: ∀x R(x, x),

transitivity: ∀x∀y∀z (R(x, y) ∧ R(y, z)→ R(x, z)).

Sb contains the usual equality axioms.
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Co-Cover Property Specification

∃x∀p (ν1(♦p, x)→ ν1(p, x))(FCCP)

∀x1 · · · ∀xn∃x∀p
`

R(x, x1) ∧ · · · ∧ R(x, xn)∧

ν1(♦p, x)→ (ν1(p, x) ∨ ν1(♦p, x1) ∨ · · · ∨ ν1(♦p, xn))
´

∃x∀p∀y
`

(R(x, y) ∧ ν(p, y))→ ν(p, x)
´

∀x1 · · · ∀xn∃x∀p∀y∃z
`

R(x, x1) ∧ · · · ∧ R(x, xn)∧

(R(x, y) ∧ ν1(p, y)→
`

ν1(p, x) ∨ (ν1(p, z) ∧ (R(x1, z) ∨ · · · ∨ R(xn, z)))
´´

∀y
`

(R(g0, y) ∧ ν(p, y))→ ν(p,g0)
´

(FCCP′)

∀x1 · · · ∀xn
`

R(gn(x1, . . . , xn), x1) ∧ · · · ∧ R(gn(x1, . . . , xn), xn)
´

∀x1 · · · ∀xn∀y∃z
`

(R(gn(x1, . . . , xn), y) ∧ ν1(p, y))→
`

ν1(p, gn(x1, . . . , xn)) ∨ (ν1(p, z) ∧ (R(x1, z) ∨ · · · ∨ R(xn, z)))
´´

gn = Skolem symbols
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Generated Rules for S4u,+

Rules for the co-cover property

(cc0):
¬R(g0, y) | ¬ν(p, y) | ν(p, g0)

(ccn0 ):
R(gn(x), x1), . . . , R(gn(x), xn)

(ccn1 ):
¬R(gn(x), y) | ¬ν(p, y) | ν(p, gn(x)) |

| R(x1, hn(p, x, y)), ν(p, hn(p, x, y)) | · · ·
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Refined tableau calculus Tab+ for S4u,+

Decomposition tableau rules

@i¬¬p

@ip

@i(p ∨ q)

@ip | @iq

@i¬(p ∨ q)

@i¬p, @i¬q

@i¬�p

@i♦{f (p, i)}, @f (p,i)¬p

@i�p, @i♦{j}

@jp

@i¬[u]p

@fu(p)¬p

@i[u]p

@jp

Theory tableau rules

@i♦{i}

@i♦{j}, @j♦{k}

@i♦{k}

(FCCP′) tableau rules (n > 0)

@g0{g0}

@g0♦{i}, @ip

@g0p @
gn(i)
♦{i1}, . . . , @

gn(i)
♦{in}

@
gn(i)
♦{j}, @jp

@
gn(i)

p | @i1♦{hn(p, i, j)}, @
hn(p,i,j)p | · · · | @in♦{hn(p, i, j)}, @

hn(p,i,j)p
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Tableau Calculi for S4u and S4u,+

TabS4u,+
def
=Tab+ + (ub).

TabS4u
def
=TabS4u,+ − {(FCCP′)-rules}.

TabS4u is a reformulation of the usual calculus for hybrid S4u.

Theorem 34

TabS4u and TabS4u,+ are sound, (constructively) complete, and terminating
tableau calculi for S4u and S4u,+ respectively.
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The Tableau Algorithm

Step 1. Rewrite α/β to [u]α ∧ ¬β.

Step 2. Run TabS4u on [u]α ∧ ¬β.

Step 3. If TabS4u([u]α ∧ ¬β) is closed
then return ‘derivable’ .

Step 4. Otherwise continue the derivation in
TabS4u,+ .

Step 5. If TabS4u,+([u]α ∧ ¬β) is closed
then return ‘not derivable but admissible’ .
Otherwise return ‘not admissible’ .

159 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Day 5: More examples
& METTEL

The modal logic of some, all
and only

Determining the admissibility
of S4-rules

The METTEL prover

Concluding remarks

Appendix

METTEL and The Framework

The framework: a semi-automatic way of generating tableau calculi.

Is there a possibility to generate a prover from a logic specification?

Yes: we need a system which can accept tableau calculi as a
parameter.

METTEL implements this feature.

160 / 439



Automated Synthesis of
Tableau Calculi

R. A. Schmidt and
D. Tishkovsky

Day 1: Introduction, Aim
& Background

Day 2: The specification
languages of the
framework

Day 3: Tableau calculus
synthesis & rule
refinement

Day 4: Blocking
mechanisms and the
finite model property

Day 5: More examples
& METTEL

The modal logic of some, all
and only

Determining the admissibility
of S4-rules

The METTEL prover

Concluding remarks

Appendix

Objectives behind the METTEL Implementation

Experiments with different tableau rules for new logics.

Quick implementation of decision procedures.

A prover which can handle frequent changes in calculi.

A prover which runs relatively fast.
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What is METTEL?

METTEL has a logic-independent inference engine

Tableau engine

Tableau calculus

Problem set

Satisfiable

Unsatisfiable

Closely related systems are The Tableau Work Bench and LOTREC.
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Simple Example I

Input sets: {P ∧ Q,¬P} and {P ∧ Q}.

Tableau calculus:

@iP, @i¬P

⊥

@i¬¬P

@iP

@i(P ∧Q)

@iP, @iQ

@i¬(P ∧Q)

@i¬P | @i¬Q

Prepare a file simple.tbl with the content:

@i P @i ~P / {FALSE}; @i ~~P / {@i P};
@i (P&Q) / {@i P @i Q}; @i ~(P&Q) / {@i ~P} | { @i ~Q};
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Simple Example II

Run METTEL:

>java -jar mettel.jar -tbl simple.tbl

Enter the problem set in the prompt:

P & Q ~P

The output will be

Unsatisfiable

If input is P & Q then the output is

Satisfiable
MODEL:[(@{n0}Q), (@{n0}P), (@{n0}(~((~P)|(~Q))))]
Compact representation:[(@{n0}Q), (@{n0}P)]
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Predefined Tableau Calculi

>java -jar mettel.jar [<predefined-tableau>] [-i <in-file>]

<predefined-tableau> is one of the following:

-bool Classical propositional logic.
-hl Hybrid logic HL(@) with relational union and compo-

sition (Default).
-hlu Hybrid logic HL(@,u) with the universal modality.
-met Metric logic (without the ‘closer’ operator).
-topo Metric logic with the topology operator.
-albo Description logic ALBO with full role negation oper-

ator.
-alboid Description logic ALBOid with full role negation op-

erator and the identity role.

<in-file> — name of the file with the problem set.
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Logical Syntax
Formulae

Booleans

⊥ ⊤ ¬P P ∧Q P ∨Q P→ Q P↔ Q

FALSE TRUE ~P P&Q P|Q P->Q P<->Q

Modal

‘Box’ ‘Diamond’ Universal modality ‘Somewhere’
[R]P 〈R〉P [u]P 〈u〉P

forall{R}P exists{R}P forall P exists P

Hybrid ‘at’ operator

@iP @i P
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Logical Syntax
Relations

Complement (role negation) ¬R ~R
Inverse R−1 R-
Reflexive-transitive closure R∗ R*
Intersection R ∩ S R&S
Union R ∪ S R|S
Composition R ◦ S R;S
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Tableau Rule

General template:
X0

X1 | · · · | Xn
,

where n ≥ 0 and Xi are sets of formulae.

METTEL representation:

<formulae>/{<formulae>} | ... | {<formulae>},

where <formulae> denotes a list of formulae.

Clash rule: <formulae>/{FALSE}
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METTEL Distinctive Features

Simple input language.

Use of Skolem terms in premises of tableau rules.

Two generic loop-checking mechanisms:

Generalisation of anywhere equality blocking.

Unrestricted blocking rule mechanism.

METTEL is the only prover which can handle logics with full negation
of roles such as ALBOid and its sublogics.

METTEL is still the only prover which decides the logic of metric and
topology.
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Welcome to METTEL Web site!

http://www.mettel-prover.org

Online Demo is available.
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Concluding remarks

The tableau calculus synthesis framework:

provides a method for turning FO semantic specifications into

sound and complete tableau calculi, and

decision procedures, when possible

covers many modal and description logics

METTEL, along with LoTReC or the Tableau Workbench, can be used as
provers for the generated tableau calculi
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Our vision

Automatic tableau calculus synthesiser

Logic
specification

Synthesiser Tableau
calculus

Extend and improve the framework

with more refinements

with notion of redundancy

to generate other kinds of tableau calculi, other types of deduction
calculi . . .

to cover non-first-order definable logics

weaken some of the conditions
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Eliminating ∃ quantifiers using Skolemisation
Intuition: Skolemisation replaces ∃y by a (choice) function f that

computes y from all the arguments y depends on

Skolemisation can be performed by using this rewrite rule:

∀x1 . . .∀xn∃yF ⇒Sk ∀x1 . . .∀xn F{y/f (x1, . . . , xn)}

where f is a fresh function symbol

Always apply outermost first, not in subformulae

f is called a Skolem function;
f (x1, . . . , xn) is called a Skolem term, or Skolem constant when
n = 0

Example:

∀x∃y P(x, y) ⇒Sk ∀x P(x, f (x))

Theorem 35 (Skolemisation does not affect (un)satisfiability)

If F
∗
⇒Sk G then F is satisfiable iff G is satisfiable
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